рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Термодинамические процессы реальных газов

Термодинамические процессы реальных газов - раздел Педагогика, ЛЕКЦИЯ 1. Предмет и метод термодинамики. Термодинамическая система В Качестве Реального Газа Рассмот­рим Водяной Пар, Который Широко Ис­пользует...

В качестве реального газа рассмот­рим водяной пар, который широко ис­пользуется во многих отраслях техники, и прежде всего в теплоэнергетике, где он является основным рабочим телом. По­этому исследование термодинамических свойств воды и водяного пара имеет большое практическое значение.

Процесс парообразования. Основные понятия и определения.Рассмотрим про­цесс получения пара. Для этого 1 кг во­ды при температуре 0 °С поместим в ци­линдр с подвижным поршнем. Приложим к поршню извне некоторую постоянную силу Р. Тогда при площади поршня F давление будет постоянным и равным p=P/F. Изобразим процесс парообразо­вания, т. е. превращения вещества из жидкого состояния в газообразное, в р,v-диаграмме

Начальное состояние воды, находя­щейся под давлением р и имеющей тем­пературу 0°С, изобразится на диаграм­ме точкой a0. При подводе теплоты к воде еетемпература постепенно повышается до тех пор, пока не достигнет температу­ры кипения ts, соответствующей данному давлению. При этом удельный объем жидкости сначала уменьшается, дости­гает минимального значения при t=4°С, а затем начинает возрастать. (Такой аномалией — увеличением плот­ности при нагревании в некотором диа­пазоне температур — обладают немногие жидкости. У большинства жидкостей удельный объем при нагревании увели­чивается монотонно). Состояние жидко­сти, доведенной до температуры кипения, изображается на диаграмме точкой а'.

При дальнейшем подводе теплоты начинается кипение воды с сильным увеличением объема. В цилиндре теперь на­ходится двухфазная среда — смесь воды и пара, называемая влажным насы­щенным паром. По мере подвода теплоты количество жидкой фазы умень­шается, а паровой — растет. Температу­ра смеси при этом остается неизменной и равной ts, так как вся теплота расходу­ется на испарение жидкой фазы. Следовательно — процесс парообразования на этой стадии является изобарно-изотермическим. Наконец, последняя капля во­ды превращается в пар, и цилиндр ока­зывается заполненным только паром, ко­торый называется сухим насыщенным. Состояние его изображается точ­кой а".

Рисунок 6.1 - р,v-диаграмма водяного пара

 

Насыщенным называется пар, находящийся в термическом и динамиче­ским равновесии с жидкостью, из кото­рой он образуется. Динамическое равно­весие заключается в том, что количество молекул, вылетающих из воды в паровое пространство, равно количеству молекул, конденсирующихся на ее поверхности. В паровом пространстве при этом равно­весном состоянии находится максималь­но возможное при данной температуре число молекул. При увеличении темпера­туры количество молекул, обладающих энергией, достаточной для вылета в па­ровое пространство, увеличивается. Рав­новесие восстанавливается за счет воз­растания давления пара, которое ведет к увеличению его плотности и, следова­тельно, количества молекул, в единицу времени конденсирующихся на поверхности воды. Отсюда следует, что давление насыщенного пара является монотонно возрастающей функцией его температу­ры, или, что то же самое, температура насыщенного пара есть монотонно воз­растающая функция его давления.

При увеличении объема над повер­хностью жидкости, имеющей температу­ру насыщения, некоторое количество жидкости переходит в пар, при уменьше­нии объема «излишний» пар снова пере­ходит в жидкость, но в обоих случаях давление пара остается постоянным.

Насыщенный пар, в котором отсут­ствуют взвешенные частицы жидкой фа­зы, называется сухим насыщенным паром. Его удельный объем и темпера­тура являются функциями давления. По­этому состояние сухого пара можно за­дать любым из параметров — давлением, удельным объемом или температурой.

Двухфазная смесь, представляющая собой пар со взвешенными в нем капель­ками жидкости, называется влажным насыщенным паром. Массовая до­ля сухого насыщенного пара во влажном называется степенью сухости па­ра и обозначается буквой х. Массовая доля кипящей воды во влажном паре, равная 1-х, называется степенью влажности. Для кипящей жидкости х=0, а для сухого насыщенного пара х=1. Состояние влажного пара характе­ризуется двумя параметрами: давлением (или температурой насыщения ts, опре­деляющей это давление) и степенью су­хости пара.

При сообщении сухому пару теплоты при том же давлении его температура будет увеличиваться, пар будет перегре­ваться. Точка а изображает состояние перегретого пара ив зависимости от температуры пара может лежать на разных расстояниях от точки а". Таким образом, перегретым называется пар, температура которого превышает температуру насыщенного пара того же давления.

Так как удельный объем перегретого пара при том же давлении больше, чем насыщенного, то в единице объема пере­гретого пара содержится меньшее коли­чество молекул, значит, он обладает меньшей плотностью. Состояние перегретого пара, как и любого газа, определя­ется двумя любыми независимыми пара­метрами.

Если рассмотреть процесс парообра­зования при более высоком давлении, то можно заметить следующие изменения. Точка a0, соответствующая состоянию 1 кг воды при О °С и новом давлении, остается почти на той же вертикали, так как вода практически несжимаема. Точ­ка а' смещается вправо, ибо с ростом давления увеличивается температура ки­пения, а жидкость при повышении темпе­ратуры расширяется. Что же касается пара (точка а"), то, несмотря на увели­чение температуры кипения, удельный объем пара все-таки падает из-за более сильного влияния растущего давления.

Поскольку удельный объем жидкости растет, а пара падает, то при постоянном увеличении давления мы достигнем та­кой точки, в которой удельные объемы жидкости и пара сравняются. Эта точка называется критической. В критиче­ской точке различия между жидкостью и паром исчезают. Для воды параметры критической точки К составляют: ркр=221,29·105 Па; tкр = 374,15 °С; vкр = 0,00326 м3/кг.

Критическая температура — это мак­симально возможная температура сосу­ществования двух фаз: жидкости и на­сыщенного пара. При температурах, больших критической, возможно су­ществование только одной фазы. Назва­ние этой фазы (жидкость или перегретый пар) в какой-то степени условно и определяется обычно ее температурой. Все газы являются сильно перегретыми сверх Tкр парами. Чем выше температура перегрева (при данном давлении), тем ближе пар по своим свойствам к идеаль­ному газу.

Наименьшим давлением, при котором еще возможно равновесие воды и насы­щенного пара, является давление, соот­ветствующее тройной точке. Под последней понимается то единственное состояние, в котором могут одновремен­но находиться в равновесии пар, вода и лед (точка А' на рисунке). Параметры тройной точки для воды: р0 = 611 Па; t0 = 0,01 °С; v0=0,00100 м3/кг. Процесс парообразования, происходящий при абсолютном давлении р0=611 Па, показан на диаграмме изобарой А'А", которая практически совпадает с осью абсцисс. При более низких давлениях пар может сосуществовать лишь в равновесии со льдом. Процесс образования пара непо­средственно из льда называется субли­мацией.

Если теперь соединить одноименные точки плавными кривыми, то получим нулевую изотерму I, каждая точка которой соответствует состоянию 1 кг во­ды при 0°С и давлении р, нижнюю пограничную кривую II, пред­ставляющую зависимость от давления удельного объема жидкости при темпе­ратуре кипения, и верхнюю погра­ничную кривую III, дающую зави­симость удельного объема сухого насы­щенного пара от давления.

Все точки горизонталей между кри­выми II и III соответствуют состояниям влажного насыщенного пара, точки кри­вой II определяют состояние кипящей воды, точки кривой III — состояния сухого насыщенного пара. Влево от кривой II до нулевой изотермы лежит область некипящей однофазной жидкости, впра­во от кривой III — область перегретого пара. Таким образом, кривые II и III определяют область насыщенного пара, отделяя ее от области воды и перегретого пара, и поэтому называются пограничными. Выше точки К, где погра­ничных кривых нет, находится область однофазных состояний, в которой нельзя провести четкой границы между жидкостью и паром.

Определение параметров воды и па­ра.Термодинамические параметры кипя­щей воды и сухого насыщенного пара берутся из таблиц теплофизических свойств воды и водяного пара. В этих таблицах термодинамические величины со штрихом относятся к воде, нагретой до температуры кипения, а величины с двумя штрихами — к сухому насыщен­ному пару.

Поскольку для изобарного процесса подведенная к жидкости теплота , то, при­менив это соотношение к процессу а'а", получим

.

Величина r называется теплотой парообразования и определяет количество теплоты, необходимое для превращения одного килограмма воды в сухой насыщенный пар той же темпе­ратуры.

 

Приращение энтропии в процессе па­рообразования определяется формулой

.

За нулевое состояние, от которого отсчитываются величины s', принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насы­щенного пара определяется только од­ним параметром, то по известному давле­нию или температуре из таблиц воды и водяного пара берутся значения v', v" , h', h" ,s', s", r.

Удельный объем vx, энтропия sx и эн­тальпия hx влажного насыщенного пара определяются по правилу аддитивности. Поскольку в 1 кг влажного пара содер­жится x кг сухого и кг кипящей воды, то

.

Аналогично

;

;

Непосредственно из таблиц взять па­раметры влажного пара нельзя. Их опре­деляют по приведенным выше формулам по заданному давлению (или температу­ре) и степени сухости.

Однофазные состояния некипящей воды и перегретого пара задаются двумя параметрами. По заданным давлению и температуре из таблиц воды и перегре­того пара находят значения v, h, s.

Т, s-диаграмма водяного пара.Для исследования различных процессов с во­дяным паром кроме таблиц используется Т, s-диаграмма. Она строится путем переноса числовых данных таблиц водяного пара в Т, s-координаты.

Рисунок 6.2 - T, s-диаграмма водяного пара

Состояние воды в тройной точке (s0 = 0; T0 = 273,16 К) изображается в диаграмме точкой А'. Откладывая на диаграмме для разных температур значения s' и s", получим нижнюю и верх­нюю пограничные кривые. Влево от ни­жней пограничной кривой располагается область жидкости, между пограничными кривыми — двухфазная область влажно­го насыщенного пара, вправо и вверх от верхней пограничной кривой — область перегретого пара.

На диаграмму наносят изобары, изохоры и линии постоянной степени су­хости, для чего каждую изобару а'а" делят на одинаковое число частей и сое­диняют соответствующие точки линиями x = const. Область диаграммы, лежащая ниже нулевой изотермы, отвечает раз­личным состояниям смеси пар+лед.

h, s-диаграмма водяного пара.Если за независимые параметры, определяю­щие состояние рабочего тела, принять энтропию s и энтальпию h, то каждое состояние можно изобразить точкой на л, s-диаграмме.

На рисунке 6.3 изображена h, s-диаграм­ма для водяного пара, которая строится путем переноса числовых данных таблиц водяного пара в h, s-координаты.

За начало координат принято состоя­ние воды в тройной точке. Откладывая на диаграмме для различных давлений значения s' и h'' для воды при температу­ре, кипения, а также s" и h" для сухого насыщенного пара, получаем нижнюю и верхнюю пограничные кривые.

Рисунок 6.3 - h, s-диаграмма водяного пара

 

Изобары в двухфазной области влаж­ного пара представляют собой пучок рас­ходящихся прямых. Действительно, в процессе р=const , или , т.е. тангенс угла на­клона изобары в h, s-координатах числен­но равен абсолютной температуре данно­го состояния. Так как в области насыще­ния изобара совпадает с изотермой, тангенс угла наклона постоянен и изо­бара является прямой. Чем выше давле­ние насыщения, тем выше температура, тем больше тангенс угла наклона изо­бары, поэтому в области насыщения пря­мые р = const расходятся. Чем больше давление, тем выше лежит изобара. Кри­тическая точка К лежит не на верши­не, как это было в р, v- и Т, s-диаграммах, а на левом склоне пограничной кри­вой.

В области перегрева температура па­ра (при постоянном давлении) растет с увеличением s примерно по логарифми­ческой кривой и крутизна изобары увели­чивается. Аналогичный характер имеют изобары и в области воды, но они идут так близко от пограничной кривой, что практически сливаются с ней.

При низких давлениях и относитель­но высоких температурах перегретый пар по своим свойствам близок к идеальному газу. Так как в изотермическом процессе энтальпия идеального газа не изменяет­ся, изотермы сильно перегретого пара идут горизонтально. При приближение к области насыщения, т. е. к верхней пограничной кривой, свойства перегрето­го пара значительно отклоняются от свойств идеального газа и изотермы искривляются.

В h, s-диаграмме водяного пара нанесены также линии v=const, идущие круче изобар.

Обычно всю диаграмму не выполня­ют, а строят только ее верхнюю часть, наиболее употребительную в практике расчетов. Это дает возможность изобра­жать ее в более крупном масштабе.

Для любой точки на этой диаграмме можно найти р, v, t, h, s, x. Большое достоинство диаграммы состоит в том, что количество теплоты в изобарном про­цессе равно разности ординат конечной и начальной точек процесса и изобража­ется отрезком вертикальной прямой, а не площадью как в Т, s-диаграмме, поэтому h, s-диаграмма исключительно широко используется при проведении тепловых расчетов.

Основные термодинамические про­цессы водяного пара.Для анализа рабо­ты паросиловых установок существенное значение имеют изохорный, изобарный, изотермический и адиабатный процессы. Расчет этих процессов можно выполнить либо с помощью таблицы воды и водяно­го пара, либо с помощью h, s-диаграммы. Первый способ более точен, но второй более прост и нагляден.

Общий метод расчета по h, s-диаг­рамме состоит в следующем. По извест­ным параметрам наносится начальное состояние рабочего тела, затем прово­дится линия процесса и определяются его параметры в конечном состоянии. Далее вычисляется изменение внутрен­ней энергии, определяются количества теплоты и работы в заданном процессе.

Изохорный процесс. Из диаграммы на рисунке видно, что нагреванием при постоянном объеме влажный пар можно перевести в сухой насыщен­ный и перегретый. Охлаждением его можно сконденсировать, но не до конца, так как при каком угодно низком давле­нии над жидкостью всегда находится не­которое количество насыщенного пара. Это означает, что изохора не пересекает нижнюю пограничную кривую.

Рисунок 6.4 - Изохорный процесс водяного пара

 

Изменение внутренней энергии водного пара при v=const

.

Данная формула справедлива и для всех без исключения остальных термоди­намических процессов.

В изохорном процессе работа 1=0, поэтому подведенная теплота расходует­ся (в соответствии с первым законом термодинамики) на увеличение внутрен­ней энергии пара:

Изобарный процесс.При подводе теплоты к влажному насыщен­ному пару его степень сухости увеличи­вается и он (при постоянной температу­ре) переходит в сухой, а при дальнейшем подводе теплоты — в перегретый пар (температура пара при этом растет). При отводе теплоты влажный пар конденсируется при Ts= const.

Полученная в процессе теплота рав­на разности энтальпий:

.

Работа процесса подсчитывается по формуле:

.

 

Рисунок 6.5 - Изобарный процесс водяного пара

Изотермический процесс. Внутренняя энергия водяного пара в процессе T = const не остается постоян­ной (как у идеального газа), так как изменяется ее потенциальная составляю­щая. Величина находится по формуле .

Количество полученной в изотерми­ческом процессе теплоты равно

.

Работа расширения определяется из первого закона термодинамики:

.

Рисунок 6.6 - Изотермический процесс водяного пара

Адиабатный процесс. При адиабатном расширении давление и температура пара уменьшаются, и перегре­тый пар становится сначала сухим, а за­тем влажным. Работа адиабатного про­цесса определяется выражением

.

 

Рисунок 6.7 - Адиабатный процесс водяного пара

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ 1. Предмет и метод термодинамики. Термодинамическая система

ВВЕДЕНИЕ... В последние годы ученые всего мира со все большим беспокойством говорят о повышении концентрации СО в атмосфере Если...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Термодинамические процессы реальных газов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛЕКЦИЯ 1
Предмет и метод термодинамики Термодинамика изучает зако­ны превращ

Термодинамическая система
Термодинамическая система представляет собой совокуп­ность материальных тел, находящихся в механическом и тепловом взаимодей­ствиях друг с другом и с окружающими систему внешними телами («вн

Термодинамические параметры состояния
Свойства каждой системы характе­ризуются рядом величин, которые при­нято называть термодинамиче­скими параметрами. Рассмот­рим некоторые из них, используя при этом известные из курса физики молекул

Термодинамический процесс
Изменение состояния термодинами­ческой системы во времени называется термодинамическим процессом. Так, при перемещении поршня в цилиндре объём, а с ним давление и температура находящегося вн

Теплоемкость газов
Отношение количества теплоты , полученного телом при бесконечно малом изменении его состояния, к связан

Смеси идеальных газов
Все зависимости, полученные выше для идеальных газов, справедливы и для их смесей, если в них подставлять газо­вую постоянную, молекулярную массу и теплоемкость смеси. Закон Дальто

Работа расширения
Работа в термодинамике, так же как и в механике, определяется произведени­ем действующей на рабочее тело силы на путь ее действия. Рассмотрим газ массой М и объемом V, заключ

Теплота
Помимо макрофизической формы пе­редачи энергии — работы существует также и микрофизическая, т. е. осуще­ствляемая на молекулярном уровне фор­ма обмена энергией между системой и окружающей средой. В

Энтропия
Как уже указывалось, величина не является полным диффе­ренциалом. Действительно, для того что­бы проинт

Общая формулировка второго закона термодинамики
Из первого закона термодинамики следует, что взаимное превращение тепловой и механической энергии в двигателе должно осуществляться в строго эквивалентных количествах. Двигатель, который позволя

Обратный цикл Карно
Осуществим цикл Карно в обратном направлении. Рабочее тело с начальными параметрами точки а расширя­ется адиабатно, совершая работу расши­рения за счет внутренней энергии, и ох­лаждается от

Изменение энтропии в неравновесных процессах
Рассмотрим принципиальные отли­чия неравновесных процессов от равно­весных на примере расширения газа в цилиндре под поршнем, полу­чающего теплоту

В закрытых системах
Основными процессами, весьма важ­ными и в теоретическом, и в прикладном отношениях, являются: изохорный, протекающий при постоянном объеме; изобарный, протекающий при посто­янном давл

Эксергия
Основываясь на втором начале термодинамики, установим количествен­ное соотношение между работой, кото­рая могла бы быть совершена системой при данных внешних условиях в случае протекания в ней равн

Истечение из суживающегося сопла
Рассмотрим процесс равновесного (без трения) адиабатного истечения газа через сопло из резервуара, в котором газ имеет параметры Т1 , p1, v1. Скорость газа на

Основные закономерности течения газа в соплах и диффузорах
В соответствии с уравнением нераз­рывности потока в стационарном режиме . (7.12) Секу

Расчет процесса истечения с помощью h,s-диаграммы
Истечение без трения.Так как во­дяной пар не является идеальным газом, расчет его истечения лучше выполнять не по аналитическим формулам, а с по­мощью h, s-диаграммы.

Дросселирование газов и паров
Из опыта известно, что если на пути движения газа или пара в канале встре­чается препятствие (местное сопротивле­ние), частично загромождающее попере­чное сечение потока, то давление за пре­пятстви

Термодинамическая эффективность циклов теплосиловых установок
Наибольший термический КПД в заданном диапазоне температур имеет цикл Карно. При его осуществлении предполагается исполь­зование горячего источника с постоянной температурой, т. е. фактически с бес

Циклы поршневых двигателей внутреннего сгорания
Чтобы исключить эксергетические по­тери за счет неравновесного теплообмена с горячим источником теплоты, целесо­образно использовать в качестве рабоче­го тела газы, получающиеся при сгора­нии топли

Циклы газотурбинных установок
В циклах ДВС рабочее тело выбра­сывается из цилиндра с температурой и давлением

Циклы Карно и Ренкина насыщен­ного пара. Регенерация теплоты.
Цикл Карно насыщенного пара мож­но было бы осуществить следующим об­разом. Теплота от горячего источника подводится при постоянной температуре

Цикл Ренкина на перегретом паре
Изображения идеального цикла перегре­того пара в p-, v-, T-, s-, и h, s-диаграммах приведены на рис. 6.9 и 6.10. Этот цикл отличается от цикла Ренкина на насы­щенном паре (см. рис. 6.

Термический КПД цикла
Если не учитывать ничтожного повышения температуры при адиабатном сжатии воды в насосе, то

Общая характеристика холодильных установок
Выработка искусственного холода и трансформация теплоты с более низкого температурного уровня на более высокий широко применяются в различных отраслях промышленности. Тепловые машины, предназначенн

Цикл паровой компрессионной холодильной установки
Паровые компрессионные установки позволяют в области насыщенного пара приблизить холодильный цикл к обратному циклу Карно. Насыщенный пар низкокипящей жидкости (хладагента) всасывается компрессором

Основы теории теплообмена
Теплопередача - это процесс переноса теплоты от одного теплоносителя к другому через разделяющую стенку. Теплопередача связана с весьма сложными процессами и при ее изучении необходимо знать

Закон Фурье
Теория теплопроводности рассматривает тело как непрерывную среду. Согласно основному закону теплопроводности - закону Фурье - вектор плотности теплового потока, передаваемого теплопроводност

Многослойная плоская стенка
l1 l2 l3

Однородная цилиндрическая стенка
Задача о распространении тепла в цилиндрической стенке также одномерная, если ее рассматривать в цилиндрических координатах. температура изменяется только вдоль радиуса r, а по длине и по ее периме

Многослойная цилиндрическая стенка
Аналогично многослойной плоской стенке, полное термическое сопротивление многослойной цилиндрической стенки можно записать:

Плоская стенка
Рассмотрим теплопередачу между двумя жидкостями через разделяющую из многослойную плоскую стенку. Здесь передача теплоты делится на три процесса: 1) В начале теплота передается от горячего

Цилиндрическая стенка
Рассмотрим теплопередачу между двумя жидкостями через разделяющую их многослойную цилиндрическую стенку. аналогично теплопередаче через плоскую стенку, линейную плотность теплового потока

Интенсификация теплопередачи
Согласно уравнению теплопередачи: , для интенсификации теплопередачи нужно либо увел

Тепловая изоляция
Для уменьшения потерь теплоты многие сооружения приходится теплоизолировать, покрывая их стенки слоем материала с малой теплопроводностью (l<0,2 Вт/(м×К)). Такие материалы называются тепло

Задачи по теплопередаче
1. Вычислить потери теплоты через единицу поверхности кирпичной обмуровки парового котла в зоне размещения водяного экономайзера, если толщина стенки d=250мм, температура газов tж1=700°С

Основной закон конвективного теплообмена
Обычно жидкие и газообразные теплоносители нагреваются или охлаждаются при соприкосновении с поверхностями твердых тел. Например, дымовые газы в печах отдают теплоту нагреваемым заготовкам, а в пар

Пограничный слой
Рассмотрим процесс теплоотдачи от потока теплоносителя к продольно омываемой им пластине. Скорость и температура набегающего потока постоянна и равны wж и tж. Как уже

Числа подобия
Основная трудность, возникающая при экспериментальном исследовании конвективного теплообмена, заключается в том, что коэффициент теплоотдачи зависит от многих параметром. Чтобы уменьшить число их с

Массообмен
Большинство веществ, используемых в технике, представляет собой многокомпонентные системы. Нефтепродукты и нефть – это смесь различных углеводородов. Поэтому многие процессы теплообмена сопровождаю

Числа подобия конвективного массообмена
Диффузионное число подобия Нуссельта В научной литературе его часто обозначают как число Шервуда

Поперечное обтекание одиночной трубы и пучка труб
Экспериментальные данные по теплоотдаче при поперечном обтекании одиночной круглой трубы спокойным, нетурбулизированным потоком обобщается формулой:

Описание процесса излучения. Основные определения
Тепловое излучение есть результат превращения внутренней энергии тел в энергию электромагнитных колебаний. Тепловое излучение как процесс распространения электромагнитных волн характеризуе

Теплообмен излучением системы тел в прозрачной среде
Рассмотрим теплообмен между двумя единичными поверхностями, обращенными друг к другу с небольшим зазором, причем Т1>Т2. В этой системе Е1 – энергия собственного

Перенос лучистой энергии в поглощающей и излучающей среде
Продукты сгорания топлив представляют собой смесь нескольких газов. Различные газы обладают различной способностью излучать и поглощать энергию. Одно- и двухатомные газы (кислород, азот и др.) прак

Типы теплообменных аппаратов
Теплообменный аппарат ( теплообменник ) - это устройство, предназначенное для нагревания, охлаждения или изменения агрегатного состояния теплоносителя. Чаще всего в теплообменных ап

Термодинамический анализ топливосжигающих устройств
Промышленная печь - термотехнологическое устройство, предназначенное для осуществления физико-химических превращений исходных материалов путем тепловой обработки их при оптимальных температурах.

Полезная тепловая нагрузка печи
Полезно использованное тепло или полезная тепловая нагруз­ка печи складывается из количеств тепле, которые передаются продукту в печи для его нагрева и частичного испарения. Если в печи по

Расчет процесса горения топлива в печи
Низшая теплота сгорания топлива рассчитывается по формулам: для жидкого топлива, кДж/кг топл.,

Тепловой баланс печи. Коэффициент полезного действия. Расход топлива
Уравнение теплового баланса печи составляется для 1 кг жидкого или 1 м3 газообразного топлива, при этом состав­ляющие уравнения измерены в кДж/кг или кДж/ м3 соответственно.

Устройство парового котла
Одна из схем котла с естественной циркуляцией приведена на рисунке. Ба­рабанный паровой котел состоит из то­почной камеры и газоходов, барабана, поверхностей нагрева, находящихся под давлением рабо

Коэффициент полезного действия
Тепловой баланс котла, как и любого теплотехнического агрегата, характери­зуется равенством между количествами подведенной (располагаемой) и расходу­емой теплоты:

Состав и основные характеристики жидкого топлива
Практически все жидкие топлива по­ка получают путем переработки нефти. Сырую нефть нагревают до 300—370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при раз­личной температ

Состав и основные характеристики газообразного топлива
К газообразным топливам относится, прежде всего, природный газ, огромными запасами которого располагает СССР. Основным его компонентом явля­ется метан СН4, кроме того, в газе раз­ных мес

Теплота сгорания топлива
Под теплотой сгорания по­нимается количество теплоты, выделяющейся при полном сгорании единицы топлива. Теплоту сгорания твердого и жидкого топлива обычно относят к 1 кг, а газообразного — к

Теплота “сгорания” воздуха
Каким бы сложным ни был состав углеводородного топлива, при его пол­ном сгорании углерод окисляется до СO2, водород — до Н2O, сера — до SO2. Формально полное окисле

Объемы и состав продуктов сгорания
При проектировании теплотехниче­ских агрегатов нужно знать количество образующихся газов, чтобы правильно рассчитать газоходы, дымовую трубу, выбрать устройство (дымосос) для уда­ления этих газов и

Методы использования тепловых ВЭР
Использование тепловых ВЭР возможно по трем направлениям: внутреннее регенеративное теплоиспользование, которое хара­ктеризуется возвратом теплоты отходящих потоков (их части) для проведен

Установки для внутреннего теплоиспользования
Регенеративное теплоиспользование позволяет не просто ути­лизировать теплоту отходящих потоков (например, газов, рис.1), но снижает расход топлива и, кроме того, улучшает ра­боту основной технологи

Котлы-утилизаторы
Для использования теплоты отходящих газов различных техно­логических установок, в том числе и печей, применяются котлы-утилизаторы, вырабатывающие, как правило, пар. При высоких температурах газов

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
  1. Латыпов Р.Ш., Шарафиев Р.Г. Техническая термодинамика и энерготехнология химических производств.-М.:Энергоатомиздат, 1998.-344 с. 2. Баскаков А.П. Теплотехника.-М.:Энерг

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги