рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основы теории теплообмена

Основы теории теплообмена - раздел Педагогика, ЛЕКЦИЯ 1. Предмет и метод термодинамики. Термодинамическая система Теплопередача - Это Процесс Переноса Теплоты От Одного Теплоносителя К...

Теплопередача - это процесс переноса теплоты от одного теплоносителя к другому через разделяющую стенку. Теплопередача связана с весьма сложными процессами и при ее изучении необходимо знать законы теории теплообмена и методы анализа, применяемые в физике, термодинамике, гидродинамике и химии.

Сложный процесс переноса теплоты разбивают на ряд более простых. Такой прием упрощает его изучение. Кроме того, каждый простой процесс переноса теплоты подчиняется своим законам. Существует три простейших способа передачи теплоты: теплопроводность, конвекция, излучение.

Явление теплопроводности состоит в переносе теплоты микрочастицами (молекулами, атомами, электронами и т.п.). такой теплообмен может происходить в любых телах с неоднородным распределением температур.

Конвективный теплоперенос (конвекция) наблюдается лишь в жидкостях и газах. Конвекция - это перенос теплоты вместе с макроскопическими объемами вещества. Следует иметь ввиду, что одновременно с конвекцией всегда существует и теплопроводность. Однако конвекция обычно является определяющей, т.к. она интенсивнее теплопроводности.

Конвекцией можно передавать теплоту на очень большие расстояния (например, при движении газа по трубам). Движущаяся среда (жидкость или газ), используемая для переноса теплоты, называется теплоносителем.

Третьим способом переноса теплоты является излучение. За счет излучения теплота передается во всех лучепрозрачных средах, в том числе и в вакууме. Носителями энергии при теплообмене излучением являются фотоны, излучаемые и поглощаемые телами, участвующими в теплообмене.

В большинстве случаев перенос тепла осуществляется несколькими способами одновременно. Например, конвективная теплопередача от газа к стенке практически всегда сопровождается параллельным переносом теплоты излучением.

Основные понятия и определения

Интенсивность переноса теплоты характеризуется плотностью теплового потока. Плотность теплового потока - это количество теплоты, передаваемое в единицу времени через единичную плотность поверхности, q [Вт/м2].

Мощность теплового потока или просто тепловой поток - это количество теплоты, передаваемое в единицу времени через произвольную поверхность F , [Вт].

q=Q/F, Вт/м2

поверхность теплообмена F - это поверхность, через которую происходит передача тепла. Например, при остывании теплоносителя в трубе диаметром d и длиной l, тепло передается от горячего теплоносителя к окружающей среде через цилиндрическую поверхность трубы. В этом случае .

Перенос теплоты зависит от распределения температуры по объему тела или пространства. Температурным полем называется совокупность мгновенных значений температуры во всех точках тела или системы тел в данный момент времени. Математическое описание температурного поля имеет вид:

t=f(x,y,z,t),

где t - температура;

x,y,z - пространственные координаты;

- время.

Температурное поле, описываемое приведенным уравнением, называется нестационарным. В этом случае температуры зависят от времени.

В том случае, когда распределение температуры в теле не изменяется со временем, температурное поле называется стационарным

t=f(x,y,z,),

если температура изменяется только по одной или двум пространственным координатам, то температурное поле называется соответственно одно- и двухмерным:

t=f(x,t),

Температурные поля (1.2) и (1.3) называются трехмерными.

Поверхность, во всех точках которой температура одинакова, называется изотермической. Изотермические поверхности могут быть замкнутыми, но не могут пересекаться. Быстрее всего температура изменяется при движении в направлении, перпендикулярном изотермической поверхности. Скорость изменения температуры по нормали к изотермической поверхности характеризуется градиентом температуры.

t3=Const
t2=Const
t1=Const
dF
q
grad t
t1>t2>t3
Градиент температуры (grad t) - есть вектор, направленный по нормали к изотермической поверхности и численно равный производной пот температуры по этому направлению:

Рисунок 9.1 - Расположение градиента температуры и вектора теплового потока относительно изотермы t2=Const температурного поля
,

 

 

где -единичный вектор, направленный в сторону возрастания температур нормально к изотермической поверхности.

 

Теория теплопроводности

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ 1. Предмет и метод термодинамики. Термодинамическая система

ВВЕДЕНИЕ... В последние годы ученые всего мира со все большим беспокойством говорят о повышении концентрации СО в атмосфере Если...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основы теории теплообмена

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛЕКЦИЯ 1
Предмет и метод термодинамики Термодинамика изучает зако­ны превращ

Термодинамическая система
Термодинамическая система представляет собой совокуп­ность материальных тел, находящихся в механическом и тепловом взаимодей­ствиях друг с другом и с окружающими систему внешними телами («вн

Термодинамические параметры состояния
Свойства каждой системы характе­ризуются рядом величин, которые при­нято называть термодинамиче­скими параметрами. Рассмот­рим некоторые из них, используя при этом известные из курса физики молекул

Термодинамический процесс
Изменение состояния термодинами­ческой системы во времени называется термодинамическим процессом. Так, при перемещении поршня в цилиндре объём, а с ним давление и температура находящегося вн

Теплоемкость газов
Отношение количества теплоты , полученного телом при бесконечно малом изменении его состояния, к связан

Смеси идеальных газов
Все зависимости, полученные выше для идеальных газов, справедливы и для их смесей, если в них подставлять газо­вую постоянную, молекулярную массу и теплоемкость смеси. Закон Дальто

Работа расширения
Работа в термодинамике, так же как и в механике, определяется произведени­ем действующей на рабочее тело силы на путь ее действия. Рассмотрим газ массой М и объемом V, заключ

Теплота
Помимо макрофизической формы пе­редачи энергии — работы существует также и микрофизическая, т. е. осуще­ствляемая на молекулярном уровне фор­ма обмена энергией между системой и окружающей средой. В

Энтропия
Как уже указывалось, величина не является полным диффе­ренциалом. Действительно, для того что­бы проинт

Общая формулировка второго закона термодинамики
Из первого закона термодинамики следует, что взаимное превращение тепловой и механической энергии в двигателе должно осуществляться в строго эквивалентных количествах. Двигатель, который позволя

Обратный цикл Карно
Осуществим цикл Карно в обратном направлении. Рабочее тело с начальными параметрами точки а расширя­ется адиабатно, совершая работу расши­рения за счет внутренней энергии, и ох­лаждается от

Изменение энтропии в неравновесных процессах
Рассмотрим принципиальные отли­чия неравновесных процессов от равно­весных на примере расширения газа в цилиндре под поршнем, полу­чающего теплоту

В закрытых системах
Основными процессами, весьма важ­ными и в теоретическом, и в прикладном отношениях, являются: изохорный, протекающий при постоянном объеме; изобарный, протекающий при посто­янном давл

Эксергия
Основываясь на втором начале термодинамики, установим количествен­ное соотношение между работой, кото­рая могла бы быть совершена системой при данных внешних условиях в случае протекания в ней равн

Термодинамические процессы реальных газов
В качестве реального газа рассмот­рим водяной пар, который широко ис­пользуется во многих отраслях техники, и прежде всего в теплоэнергетике, где он является основным рабочим телом. По­этому исслед

Истечение из суживающегося сопла
Рассмотрим процесс равновесного (без трения) адиабатного истечения газа через сопло из резервуара, в котором газ имеет параметры Т1 , p1, v1. Скорость газа на

Основные закономерности течения газа в соплах и диффузорах
В соответствии с уравнением нераз­рывности потока в стационарном режиме . (7.12) Секу

Расчет процесса истечения с помощью h,s-диаграммы
Истечение без трения.Так как во­дяной пар не является идеальным газом, расчет его истечения лучше выполнять не по аналитическим формулам, а с по­мощью h, s-диаграммы.

Дросселирование газов и паров
Из опыта известно, что если на пути движения газа или пара в канале встре­чается препятствие (местное сопротивле­ние), частично загромождающее попере­чное сечение потока, то давление за пре­пятстви

Термодинамическая эффективность циклов теплосиловых установок
Наибольший термический КПД в заданном диапазоне температур имеет цикл Карно. При его осуществлении предполагается исполь­зование горячего источника с постоянной температурой, т. е. фактически с бес

Циклы поршневых двигателей внутреннего сгорания
Чтобы исключить эксергетические по­тери за счет неравновесного теплообмена с горячим источником теплоты, целесо­образно использовать в качестве рабоче­го тела газы, получающиеся при сгора­нии топли

Циклы газотурбинных установок
В циклах ДВС рабочее тело выбра­сывается из цилиндра с температурой и давлением

Циклы Карно и Ренкина насыщен­ного пара. Регенерация теплоты.
Цикл Карно насыщенного пара мож­но было бы осуществить следующим об­разом. Теплота от горячего источника подводится при постоянной температуре

Цикл Ренкина на перегретом паре
Изображения идеального цикла перегре­того пара в p-, v-, T-, s-, и h, s-диаграммах приведены на рис. 6.9 и 6.10. Этот цикл отличается от цикла Ренкина на насы­щенном паре (см. рис. 6.

Термический КПД цикла
Если не учитывать ничтожного повышения температуры при адиабатном сжатии воды в насосе, то

Общая характеристика холодильных установок
Выработка искусственного холода и трансформация теплоты с более низкого температурного уровня на более высокий широко применяются в различных отраслях промышленности. Тепловые машины, предназначенн

Цикл паровой компрессионной холодильной установки
Паровые компрессионные установки позволяют в области насыщенного пара приблизить холодильный цикл к обратному циклу Карно. Насыщенный пар низкокипящей жидкости (хладагента) всасывается компрессором

Закон Фурье
Теория теплопроводности рассматривает тело как непрерывную среду. Согласно основному закону теплопроводности - закону Фурье - вектор плотности теплового потока, передаваемого теплопроводност

Многослойная плоская стенка
l1 l2 l3

Однородная цилиндрическая стенка
Задача о распространении тепла в цилиндрической стенке также одномерная, если ее рассматривать в цилиндрических координатах. температура изменяется только вдоль радиуса r, а по длине и по ее периме

Многослойная цилиндрическая стенка
Аналогично многослойной плоской стенке, полное термическое сопротивление многослойной цилиндрической стенки можно записать:

Плоская стенка
Рассмотрим теплопередачу между двумя жидкостями через разделяющую из многослойную плоскую стенку. Здесь передача теплоты делится на три процесса: 1) В начале теплота передается от горячего

Цилиндрическая стенка
Рассмотрим теплопередачу между двумя жидкостями через разделяющую их многослойную цилиндрическую стенку. аналогично теплопередаче через плоскую стенку, линейную плотность теплового потока

Интенсификация теплопередачи
Согласно уравнению теплопередачи: , для интенсификации теплопередачи нужно либо увел

Тепловая изоляция
Для уменьшения потерь теплоты многие сооружения приходится теплоизолировать, покрывая их стенки слоем материала с малой теплопроводностью (l<0,2 Вт/(м×К)). Такие материалы называются тепло

Задачи по теплопередаче
1. Вычислить потери теплоты через единицу поверхности кирпичной обмуровки парового котла в зоне размещения водяного экономайзера, если толщина стенки d=250мм, температура газов tж1=700°С

Основной закон конвективного теплообмена
Обычно жидкие и газообразные теплоносители нагреваются или охлаждаются при соприкосновении с поверхностями твердых тел. Например, дымовые газы в печах отдают теплоту нагреваемым заготовкам, а в пар

Пограничный слой
Рассмотрим процесс теплоотдачи от потока теплоносителя к продольно омываемой им пластине. Скорость и температура набегающего потока постоянна и равны wж и tж. Как уже

Числа подобия
Основная трудность, возникающая при экспериментальном исследовании конвективного теплообмена, заключается в том, что коэффициент теплоотдачи зависит от многих параметром. Чтобы уменьшить число их с

Массообмен
Большинство веществ, используемых в технике, представляет собой многокомпонентные системы. Нефтепродукты и нефть – это смесь различных углеводородов. Поэтому многие процессы теплообмена сопровождаю

Числа подобия конвективного массообмена
Диффузионное число подобия Нуссельта В научной литературе его часто обозначают как число Шервуда

Поперечное обтекание одиночной трубы и пучка труб
Экспериментальные данные по теплоотдаче при поперечном обтекании одиночной круглой трубы спокойным, нетурбулизированным потоком обобщается формулой:

Описание процесса излучения. Основные определения
Тепловое излучение есть результат превращения внутренней энергии тел в энергию электромагнитных колебаний. Тепловое излучение как процесс распространения электромагнитных волн характеризуе

Теплообмен излучением системы тел в прозрачной среде
Рассмотрим теплообмен между двумя единичными поверхностями, обращенными друг к другу с небольшим зазором, причем Т1>Т2. В этой системе Е1 – энергия собственного

Перенос лучистой энергии в поглощающей и излучающей среде
Продукты сгорания топлив представляют собой смесь нескольких газов. Различные газы обладают различной способностью излучать и поглощать энергию. Одно- и двухатомные газы (кислород, азот и др.) прак

Типы теплообменных аппаратов
Теплообменный аппарат ( теплообменник ) - это устройство, предназначенное для нагревания, охлаждения или изменения агрегатного состояния теплоносителя. Чаще всего в теплообменных ап

Термодинамический анализ топливосжигающих устройств
Промышленная печь - термотехнологическое устройство, предназначенное для осуществления физико-химических превращений исходных материалов путем тепловой обработки их при оптимальных температурах.

Полезная тепловая нагрузка печи
Полезно использованное тепло или полезная тепловая нагруз­ка печи складывается из количеств тепле, которые передаются продукту в печи для его нагрева и частичного испарения. Если в печи по

Расчет процесса горения топлива в печи
Низшая теплота сгорания топлива рассчитывается по формулам: для жидкого топлива, кДж/кг топл.,

Тепловой баланс печи. Коэффициент полезного действия. Расход топлива
Уравнение теплового баланса печи составляется для 1 кг жидкого или 1 м3 газообразного топлива, при этом состав­ляющие уравнения измерены в кДж/кг или кДж/ м3 соответственно.

Устройство парового котла
Одна из схем котла с естественной циркуляцией приведена на рисунке. Ба­рабанный паровой котел состоит из то­почной камеры и газоходов, барабана, поверхностей нагрева, находящихся под давлением рабо

Коэффициент полезного действия
Тепловой баланс котла, как и любого теплотехнического агрегата, характери­зуется равенством между количествами подведенной (располагаемой) и расходу­емой теплоты:

Состав и основные характеристики жидкого топлива
Практически все жидкие топлива по­ка получают путем переработки нефти. Сырую нефть нагревают до 300—370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при раз­личной температ

Состав и основные характеристики газообразного топлива
К газообразным топливам относится, прежде всего, природный газ, огромными запасами которого располагает СССР. Основным его компонентом явля­ется метан СН4, кроме того, в газе раз­ных мес

Теплота сгорания топлива
Под теплотой сгорания по­нимается количество теплоты, выделяющейся при полном сгорании единицы топлива. Теплоту сгорания твердого и жидкого топлива обычно относят к 1 кг, а газообразного — к

Теплота “сгорания” воздуха
Каким бы сложным ни был состав углеводородного топлива, при его пол­ном сгорании углерод окисляется до СO2, водород — до Н2O, сера — до SO2. Формально полное окисле

Объемы и состав продуктов сгорания
При проектировании теплотехниче­ских агрегатов нужно знать количество образующихся газов, чтобы правильно рассчитать газоходы, дымовую трубу, выбрать устройство (дымосос) для уда­ления этих газов и

Методы использования тепловых ВЭР
Использование тепловых ВЭР возможно по трем направлениям: внутреннее регенеративное теплоиспользование, которое хара­ктеризуется возвратом теплоты отходящих потоков (их части) для проведен

Установки для внутреннего теплоиспользования
Регенеративное теплоиспользование позволяет не просто ути­лизировать теплоту отходящих потоков (например, газов, рис.1), но снижает расход топлива и, кроме того, улучшает ра­боту основной технологи

Котлы-утилизаторы
Для использования теплоты отходящих газов различных техно­логических установок, в том числе и печей, применяются котлы-утилизаторы, вырабатывающие, как правило, пар. При высоких температурах газов

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
  1. Латыпов Р.Ш., Шарафиев Р.Г. Техническая термодинамика и энерготехнология химических производств.-М.:Энергоатомиздат, 1998.-344 с. 2. Баскаков А.П. Теплотехника.-М.:Энерг

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги