рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общее решение однородной линейной системы.

Общее решение однородной линейной системы. - раздел Математика, Основные свойства определителей Рассмотрим Однородную Линейную Систему ...

Рассмотрим однородную линейную систему

. (4.2)

Отметим, что такая система всегда совместна, поскольку имеет нулевое решение называемое тривиальным.

Пусть ранг матрицы системы r<n. Предположим, что в базисный минор входят коэффициенты первых r уравнений. Тогда оставшиеся m – r уравнений являются линейными комбинациями, то есть следствиями предыдущих. Поэтому можно оставить в системе только первые r уравнений:

.

Оставим в левой части каждого уравнения неизвестные, коэффициенты при которых входят в базисный минор, а остальные неизвестные перенесем направо:

(4.3)

Эта система будет иметь единственное решение относительно неизвестных выражающее их через остальные неизвестные (), которым можно придавать любые произвольные значения. Таким образом, система (4.2) при r<n является неопределенной.

 

Определение 4.7. Неизвестныекоэффициенты при которых входят в базисный минор матрицы системы, называются базисными неизвестными, а остальные () – свободными неизвестными.

 

Определение 4.8. Решения системы (4.2) (4.4) называются линейно независимыми, если линейная комбинация дает нулевой столбец только при

Покажем, что число линейно независимых решений системы (4.2) равно n – r. Действительно, рассмотрим столбцы вида

(4.5) содержащие по n-r чисел. Очевидно, что эти столбцы линейно независимы, а любой другой столбец той же размерности является их линейной комбинацией. Пусть эти столбцы задают значения свободных неизвестных системы (4.2).

Тогда базисные неизвестные будут однозначно определяться для выбранных свободных неизвестных из системы (4.3) по правилу Крамера, и все решения системы, соответствующие наборам свободных неизвестных (4.5), образуют n-r линейно независимых столбцов вида (4.4), то есть n-r линейно независимых решений системы (4.2).

 

Определение 4.9. Любые n – r линейно независимых решений системы (4.2) называются ее фундаментальной системой решений.

 

Определение 4.10. Фундаментальная система решений линейной однородной системы, в которой свободные неизвестные задаются по формулам (4.5), называется нормальной фундаментальной системой решений.

 

Замечание. Очевидным образом доказываются свойства решений однородной линейной системы (4.2):

Свойство 1. Сумма решений системы (4.2) является ее решением.

Свойство 2. Столбец решений (4.2), умноженный на любое число, тоже есть решение этой системы.

 

Следовательно, любая линейная комбинация фундаментальной системы решений системы (4.2) является ее решением. Можно доказать и обратное утверждение:

 

Теорема 4.3(без доказательства). Любое решение однородной линейной системы (4.2) является линейной комбинацией фундаментальной системы ее решений.

 

Таким образом, любое решение системы (4.2) имеет вид:

, где - фундаментальная система решений.

 

Пример.

Решим систему . Найдем ранг матрицы системы . Преобразуем ее к виду: . Очевидно, что r(A)=2.

Пусть - базисные неизвестные, - свободные неизвестные. Заменим исходную систему системой из первых двух уравнений, коэффициенты которых входят в базисный минор, и перенесем базисные неизвестные в правые части уравнений:

. Пусть . Тогда Если

тоПолучена фундаментальная система решений: .

Теперь общее решение системы можно записать в виде: , где С1 и С2 – любые произвольные числа.

 

– Конец работы –

Эта тема принадлежит разделу:

Основные свойства определителей

Определение матрицы Определители второго и третьего порядков их основные свойства Миноры и алгебраические дополнения разложение определителя по... Определение Матрицей называется прямоугольная таблица чисел...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общее решение однородной линейной системы.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные свойства определителей.
Сформулируем и докажем основные свойства определителей 2-го и 3-го порядка (доказательство проведем для определителей 3-го порядка).   Свойство 1. Определитель не изме

Разложение определителя по строке.
  Определение1. 7. Минором элемента определителя называется определитель, полученный из данного путем вычеркивания строки и столбца, в которых стоит выбранный

Лекция 2. Системы линейных уравнений. Метод Гаусса. Правило Крамера.
Определение 2.1. Линейными операциями над какими-либо объектами называются их сложение и умножение на число.   Определение 2.2. Линейно

Метод Гаусса решения линейных систем.
Замечание. Линейная система (2.2) может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.   Примеры: 1.

Правило Крамера.
  Рассмотрим систему (2.3). Назовем главным определителем этой системы определитель , элем

Перемножение матриц.
Выше было указано, что сложение матриц накладывает условия на размерности слагаемых. Умножение матрицы на матрицу тоже требует выполнения определенных условий для размерностей сомножителей, а именн

Обратная матрица.
  Определение 3.7. Квадратная матрица А называется вырожденной, если , и не

Решение линейных систем с помощью обратной матрицы.
Рассмотрим линейную систему (2.3): и введем следующие обозначения:

Теорема о ранге.
  Определение 4.3. Базисным минором матрицы называется любой ее ненулевой минор, порядок которого равен рангу матрицы.   Определение

Совместность линейных систем.
  Определение 4.5. Линейная система называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

Структура общего решения неоднородной линейной системы.
  Рассмотрим неоднородную линейную систему (2.2): . Докажем следующие свойства ее решений

Лекция 5.
Векторы. Линейные операции над векторами. Проекция вектора на ось. Декартовы координаты векторов и точек. Скалярное произведение векторов, его основные свойства, координатное выражение. &n

A a+(b+c)=OA+(AB+BC)=OA+AC=OC.
Свойство 2 доказано. b+с O cС Свойство 3. Для любого

Базис и координаты вектора.
  Определение 5.7. Линейной комбинацией векторов а1, а2,…,аnназывается выражение вида: k1

Скалярное произведение векторов.
  Определение 5.14. Скалярным произведением двух векторов называется произведение их модулей на косинус угла между ними: ab =

Векторное произведение векторов.
  Определение 6.2. Вектор с называется векторным произведениемвекторов аи b, если:

Смешанное произведение векторов.
Определение 6.4. Смешанным произведением векторов а, bи с называется результат скалярно

Прямая на плоскости.
  Рассмотрим различные виды уравнений прямой на плоскости. Пусть прямая проходит через точку М0 (x0,y0) перпендикулярно вектору

Неполные уравнения прямой.
Уравнение (7.4) называется полным, если коэффициенты А,В и С не равны нулю, и неполным, если хотя бы одно из этих чисел равно нулю. Рассмотрим возмож

Угол между прямыми. Условия параллельности и
перпендикулярности двух прямых.   1. Если прямые L1 и L2 заданы общими уравнениями А1х + В1у + С1 = 0 и А

Плоскость в пространстве.
  Получим сначала уравнение плоскости, проходящей через точку М0(х0 ,у0 ,z0) перпендикулярно вектору n

Неполные уравнения плоскости.
Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным. Рассмотрим возможные виды неполных уравнений: 1) D = 0 – плоскость Ax + By +

Перпендикулярности плоскостей.
Если две плоскости (α1 и α2) заданы общими уравнениями вида: A1x+B1y+C1z+D1=0 и A2x+B2

Прямая в пространстве.
  Замечание. Прямую в пространстве невозможно задать одним уравнением. Для этого требуется система двух или более уравнений. Первая возможность составить уравнения прямой в п

Угол между прямыми. Угол между прямой и плоскостью.
  Угол между прямыми в пространстве равен углу между их направляющими векторами. Поэтому, если две прямые заданы каноническими уравнениями вида

Кривые второго порядка. Эллипс, гипербола и парабола, их свойства и канонические уравнения.
Определение 9.1. Кривыми второго порядкана плоскости называются линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.  

Эллипс.
Определение 9.2. Эллипсомназывается множество точек плоскости, для которых сумма расстояний до двух фиксированных точек F1 и F2 этой плос

Гипербола.
Определение 9.5. Гиперболойназывается множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2

Парабола.
  Определение 9.8. Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно рассто

Эллипсоид.
Определение 10.2. Эллипсоидом называется поверхность, которая в некоторой системе прямоугольных декартовых координат определяется уравнением

Гиперболоиды.
  Определение 10.3. Гиперболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими ура

Параболоиды.
Определение 10.4. Параболоидаминазываются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги