рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теорему доведено.

Теорему доведено. - раздел Математика, Курс починається зі знайомого із шкільних курсів математики та фізики розділу векторна алгебра 2.2 Підстановки N-Го Степеня. Означення....

2.2 Підстановки n-го степеня.

Означення.Підстановкою -го степеня називається бієктивне відображення -елементної множини у себе.

Будемо записувати підстановку у два рядки: у першому будуть вихідні елементів, а у другому – їх образи.

Наприклад:

 

Поставимо 2 питання:

1) Скільки форм запису однієї ї тієї підстановки.

2) Скільки різних підстановок n-го степеня можна скласти.

На обидва питання відповідь:

Розглянемо перше питання. Різні форми запису можна отримати за рахунок різного розташування стовпчиків перестановок. З теорії перестановок відомо, що їх буде n!.

Розглянемо друге питання. Зафіксуємо елементи у першому рядку. Очевидно, що підстановки будуть різними, якщо відрізняються відповідно образи у другому рядку. Отже кількість підстановок дорівнюватиме кількості перестановок елементів другого рядка, а їх, як відомо, n!.

Означення. Підстановка називається парною, якщо парності верхньої і нижньої перестановок однакові, тобто обидві перестановки або парні або непарні.

Означення. Підстановка називається парною, якщо загальна кількість інверсій верхньої і нижньої перестановок є парним числом, в супротивному разі перестановка непарна.

Теорема. При n≥2 кількість парних підстановок дорівнює кількості непарних підстановок, тобто дорівнює .

Запишемо всі підстановки у вигляді:

 

Твердження теореми випливає з відповідної теореми для перестановок. Дійсно, тоді парність підстановки визначається лише парністю нижньої перестановки, а парних нижніх існує .

Зауваження. Для самостійного доведення залишається факт, що означення парності підстановки не залежить від форми запису цієї підстановки.

2.3 Поняття і властивості визначника n-го порядку

На практичних заняттях було введено поняття визначника другого і третього порядків. Це були числа, отримані за певними законами з таких таблиць- матриць другого і третього порядків відповідно:

s w:space="720"/></w:sectPr></w:body></w:wordDocument>">

Визначник другого порядка – це число, що позначаєтьсяі яке дорівнює алгебраїчній сумі, аналогічно визначник третього порядку:

Ми хочемо узагальнити це поняття, тобто отримати визначник -го порядку таким чином, що з нього при та отримати попереднє.

Аналіз обчислення визначників другого і третього порядків приводить до доцільності такого означення:

Означення. Визначником -го порядку, що відповідає матриці:

 

називається алгебраїчна сума доданків, кожний з яких є добутком елементів, взятих по одному з кожного рядка і кожного стовпця матриці, причому зі знаком "+", якщо підстановка складена з перших і других індексів, парна і зі знаком "–", якщо вона непарна.

Отже визначник -го порядку складається з доданків вигляду , де – кількість інверсій у перестановці α12,…,αn.

Для визначника вводять позначення:

 

Властивість 1. Визначник не зміниться, якщо його рядки зробити відповідними стовпцями.

Розглянемо визначник d.

 

 

 

Стверджується, що

Розглянемо загальний член визначника d:
(1) – загальний член d.
α12,…,αn - перестановка з 1,2,…,n
Запишемо член (1) в позначках ij.

(1)
Таким чином (1) є членом і визначника d1. З′ясуємо, з яким знаком (1) входить до визначника d1. Знак члена (1) в d визначається парністю підстановки

Знак (1) в d1 визначається парністю підстановки

Ці підстановки, взагалі кажучи, різні, але парності в них однакові, тому що загальна кількість інверсій верхньої і нижньої перестановок однакова, тому і знаки члена (1) в d і d1 однакові.

Це перетворення, при якому всі рядки стають відповідними стовбцями, називається транспонуванням.

Властивість 2. Якщо в визначнику поміняти місцями будь які 2 рядки, то знак визначника зміниться на протилежний.

Доведення за схемою властивості 1.

Насправді, нехай у визначнику міняються місцями i-ий та j-ий рядки, , а всі інші рядки залишаються на місці. Ми отримаємо визначник :

 

.

 

Якщо (1) є членом визначника , то всі його елементи і у визначнику залишаються, очевидно, в різних рядках і різних стовпцях. Таким чином, визначники d та d1 складаються з одних і тих же членів.

Члену (1) у визначнику відповідає підстановка (2),

а у визначнику - підстановка (3).

Підстановку (2) можна одержати з підстановки (1) однією транспозицією в верхньому рядку, тобто вона має протилежну парність. Звідси випливає, що всі члени визначника d входять до визначника d1 і відрізняються лише знаком.

Властивість 3.Якщо в визначнику є нульовий рядок, то визначник дорівнює 0.

Нехай усі елементи і-го рядка визначника є нулями

За означенням визначник n-го порядку це алгебраїчна сума n доданків, кожний з яких є добутком n елементів, узятих по одному з кожного рядка й кожного стовпця матриці і т.д. Отже, у кожний член визначника повинен увійти множником один елемент з і-ого рядка, тому в нашому випадку всі члени визначника дорівнюють нулю. Що й треба було довести.

Властивість 4.Якщо в визначнику є 2 рівних рядка, то визначник дорівнює 0.

Доведення. Нехай у визначнику d рівні між собою і-рядок і j=рядок

 

Нехай d = k

d1 – визначник d, в якому поміняли і з j рядок.

Тоді за властивістю 2:

d1=-k

Але насправді нічого не змінилось, оскільки, i та j рядки рівні

d1=d=k ⟹ -k=k

Звідси, 2k=0, k=0.

Властивість 5.Якщо всі елементи деякого рядка помножити на число r, то визначник зміниться в r разів.

Доведення за схемою властивості 1.

Цю ж властивість можна сформулювати у вигляді: якщо рядок визначника містить постійний множник, то його можна винести за знак визначника.

Розглянемо визначник d:

 

 

Нехай на r помножені всі елементи і-ого рядка. Кожний член визначника містить рівно один елемент із і-ого рядка, тому всілякий член отримує множник r, тобто сам визначник множиться на r.

Властивість 6.Якщо у визначнику є два пропорційні рядки, то визначник = 0.

Доведення проводиться з використанням властивості 5 і властивості 4.

Насправді, нехай елементи j-ого рядка визначника відмінюються від відповідних елементів і-ого рядка одним і тим самим множником r.

 

 

 

Виносячи спільний множник r із j-ого рядка за знак визначника, ми отримуємо визначник з двома однаковими рядками, який дорівнює нулю за властивістю 4.

Властивість 4 (а також властивість 3 при ) є, очевидно, окремим випадком властивості 6 (при r = 1 і r = 0).

Властивість 7. Якщо кожний елемент і-рядка визначників є сумою 2-ох доданків, то такий визначник можна подати як суму двох визначників, у яких всі рядки, за винятком і-ого такі ж, як у початковому. і-й рядок першого визначника складається з перших доданків, і-ий рядок другого визначника складається з других доданків.

 

 

 

Доведення за схемою доведення властивості 1.

Дійсно, всілякий член заданого визначника можна подати у вигляді:

 

Збираючи разом перші доданки цих сум (з тими ж знаками, які мали відповідні члени в заданому визначнику) ми отримаємо, очевидно, визначник n-го порядку, що відмінюється від заданого визначника лише тим, що в і-ому рядку замість елементів стоять елементи . Відповідно другі доданки складають визначник, в і-ому рядку якого стоять елементи .

Властивість 8.Якщо до і-ого рядка визначника додати j-ий рядок, в подумках помножений на деяке число, то визначник не зміниться.

Доведення. Нехай до і-го рядка визначника d додається j-ий рядок, помножений на k, тобто в новому визначнику всілякий елемент і-го рядка має вигляд . Тоді на підставі властивості 7 цей визначник дорівнює сумі двох визначників, з яких перший є d, а другий містить пропорційні рядки і тому дорівнює 0.

Властивість 9.Якщо в визначнику присутній рядок, що є лінійною комбінацією інших рядків, то визначник дорівнює 0.

– Конец работы –

Эта тема принадлежит разделу:

Курс починається зі знайомого із шкільних курсів математики та фізики розділу векторна алгебра

За час існування спеціальності Прикладна математика у Дніпропетровському національному університеті створено добре збалансований курс Алгебри та... Курс починається зі знайомого із шкільних курсів математики та фізики розділу... При викладанні курсу Алгебри та геометрія витримується один із дидактичних принципів від простого до складного...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теорему доведено.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Векторна алгебра
  Одним з важливих розділів даного курсу є загальна теорія лінійних алгебраїчних рівнянь. Ця теорія ґрунтується на понятті рангу системи векторів, арифметичному просторі. Тому поперед

Доведення.
Нехай система векторів лінійно залежна за означенням 1.Треба довести, що вона лінійно залежна у сенсі означення 2. Скористаємось означенням 1. Тоді виконується (1): . Дод

Теорему доведено.
Означення.Система векторів називається лінійно незалежною, якщо рівність виконується тоді і тільки тоді, коли . З вище доведеної теореми випливає, що якщо система лінійно

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Доведемо, що вектори колінеарні. Отже один з векторів є лінійною комбінацією. Нехай це (для визначеності).

Доведення.
Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Покажемо, що вони компланарні. Якщо серед векторів системи пара колінеарних, то очевидно, що вони є компланарними. Н

Доведення.
Нехай маємо систему . Якщо серед них є трійка компланарних, то вони очевидно лінійно залежні. Нехай такої трійки немає. Візьмемо точку А і прикладемо до неї дані вектори. Побудуємо

Теорему доведено.
Зауваження. Мимохідь ми довели таке важливе твердження: будь-який вектор у просторі можна розкласти за трійкою некомпланарних векторів. 1.5 Поняття базису простору

Доведення.
Доведемо цю теорему в просторі. Розглянемо базисні вектори . Візьмемо довільний вектор . Зауважимо, що можливість розкладання доведено у теоремі 4 про геометричний зміст лінійної

Теорему доведено.
Означення.Координатами вектора у заданому базисі називаються коефіцієнти розкладання цього вектора за векторами базису. 1.6 Афінна система координат.

I. Скалярний добуток
1. Скалярна проекція вектора на вісь. Почнемо з допоміжного поняття величини напрямленого відрізку. Розглянемо вісь u і напрямлені відрізки на осі u. Означ

II. Векторний добуток
1. Поняття векторного добутку Введемо спочатку поняття 1)правої та 2)лівої трійки векторів. Означення 1. Упорядкована трійка векторів a, b, c називається п

Доведення.
Припустимо, що знайшовся такий векторний простір V, у якому декілька різних нульових елементів: і . Розглянемо суму . За означенням нульового вектора : . За означенням ну

Доведення.
Припустимо, що у деякому векторному просторі Vзнайшовся вектор , для якого є декілька різних протилежних елементів: та . Розглянемо суму . Скористуємось також асоціативністю додавання.

Доведення
Застосуємо метод математичної індукції по кількості символів n. При це очевидно: 1,2; 2,1. Зробимо індуктивне припущення: вважатимемо правильним дане твердження пр

Доведення.
При доведенні слід розглянути 2 випадки. 1. Елементи та , над якими здійснюється транспозиція, знаходяться поруч:   Зауважимо, що після транспозиції положення та від

Доведення.
Нехай, наприклад, і-ий рядок буде лінійною комбінацією s інших рядків       Застосовуючи властивість 7, ми подамо наш визначник у вигляді суми виз

Лема до теореми Лапласа. Теорема Лапласа.
Лема(про добуток мінору на його алгебраїчне доповнення ). Добуток мінору М на його алгебраїчне доповнення А складається з деяких членів визначника d, причому ці члени вход

Доведення.
Нехай задано визначник d.   Для визначеності проведемо доведення, виділивши перші k рядків. Складемо всілякі мінори k-го порядку, що знаходяться у перших k рядках. Нехай це б

Доведення.
Нехай задано довільний визначник:   Доведемо, що Для доведення побудуємо допоміжний визначник, який буде відрізнятися від визначника d лише одним рядком. &n

Доведення.
Нехай задано довільний векторний простір V і його базис . Розглянемо довільний вектор , що належить V.   1. Доведення можливості розкладання. Розглянемо систему – лі

Доведення.
Розглянемо рівність (*) з означення лінійно залежної і лінійно незалежної системи:   З'ясуємо, при яких вона виконується:   З цієї векторної рівності о

Доведення.
Для зручності доведення цієї властивості введемо символ . Нехай задано суму однотипних доданків   Застосовуючи двічі цей символ, отримаєм для  

Доведення.
Нехай найвищий порядок мінорів, що не дорівнюють нулю є число р. Це означає, що в матриці А є мінор р-того порядку, не рівний нулю. Мінори р + 1 і більш високих порядків дорівнюють нулю. Д

Теорема.
Для того, щоб визначник п - того порядку дорівнював нулю необхідно і достатньо, щоб його рядки (стовпці) утворювали лінійно залежну систему. Доведення: Необхід

Теорема.
1. Якщо ранг матриці А дорівнює рангу розширеної матриіці і це спільне значення менше n (rA=r <n), де n – кількість невідомих у системі, то система (1) є невизначеною

Доведення.
Доведемо першу властивість, а друга доводиться аналогічно. Нехай і – розв’язки системи (1). Треба визначити, чи є розв’язком системи (1). Розглянемо систему в вигля

Доведенння твердження.
Нехай Н= – множина розв’язків системи (1), – множина розв’язків системи (2). Нехай - окремий розв’язок системи (1). Розглянемо суму з будь-яким розв’язком однорідної сист

Закони множення.
1. Множення матриць, взагалі кажучі, не комутативне. Для того, щоб в цьому переконатись,досить знайти дві матриці А і В, для яких А×В ¹ В×А . А= , В= . А×В

Доведення.
Необхідність. Нехай матриця С є скалярною. Треба довести, що , " А. З того, що матриця С скалярна, вона має вигляд С = . Вище було доведено,

Доведення.
Небхідність. Нехай матриця А має псевдообернену праву. Треба довести, що матриця А – рядковоневиродженна, тобто r A = s . З того, що існує , випливає А × = Е (s&acut

Побудова множини комплексних чисел.
Відомо,що існує взаємнооднозначна відповідність між точкою прямої і дійсними числами. Але маючи дійсні числа, неможна розв¢язати навіть таке просте рівняння . Тоді спробували побудува

Полярна система координат.
Означення.Полярною системою координат називають систему координат на площині, що складається з числової прямої, яка називається полярною віссю і точки на ній, що називається полюсо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги