рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

И плоскостью параллелизма.

И плоскостью параллелизма. - Лекция, раздел Математика, Введение в курс. Курс лекций Начертательная геометрия Это Линейчатые Поверхности Заданные Двумя Направляющими И Дополнительным Усло...

Это линейчатые поверхности заданные двумя направляющими и дополнительным условием - образующая параллельна плоскости. Плоскость называют плоскостью параллелизма.

В качестве примера рассмотрим построение гиперболического параболоида, который в технике часто называют косой плоскостью.

 

Формула поверхности F{î( a, b, S) ( îi Ç a, b; îi÷÷ S)ý.

Направляющими примем две скрещивающиеся прямые aиbи вертикальную плоскость параллелизма S. Образующая î скользит по этим направляющим параллельно плоскости S. Построение эпюра поверхности произведем следующим образом. Построим проекции двух произвольных образующих î и î`и отметим точки пересечения с направляющими aиbкакD, E , F, G.

 
 


F2

D 2 î”2

 
 


a2

 
 


E2 b2

 
 


î 2

G2

E1 î”1

a1 F1

D1 b1

î 1

S1 G1

 

Проекции D1 E1, F1 G1 разделим на произвольное число равных частей и проведем через них горизонтальные проекции образующих. Затем построим фронтальные проекции образующих. Кривая огибающая фронтальные проекции образующих представляет собой параболу.

Подобную задачу вы будете решать в Тетради (58) на практических занятиях.

 

 

Линейчатые поверхности с тремя направляющими прямыми линиями.

Если три направляющие b , c, d прямые линии не параллельны никакой плоскости, то скользящая по ним прямая î образует поверхность однополостного гиперболоида.

Для большей наглядности ограничим поверхность двумя плоскостями пересекающимися с поверхностью по окружностям (так как это представлено на макете). Сечение поверхности может представлять и эллипс.

Построение эпюра поверхности заключается в том, что проекции окружностей -

сечений делят на произвольное число частей . В данном случае на 12 частей.

Деление произведем циркулем начав с горизонтальных проекций сечений.

(На горизонтальной проекции они накладываются друг на друга).

Когда деление произведено как на горизонтальных, так и на фронтальных проекциях соединяем первую точку (т.1) нижней окружности с пятой точкой (т.5) верхней окружности . Строим горизонтальную, затем фронтальную проекции линии 1 - 5. Вторую точку (т.2) нижней окружности с шестой точкой (т.6) верхней окружности и т.д.. Следите за построением на доске.

Таким образом строится каркас поверхности.

Второй каркас состоит из прямых, соединяющих первую точку верхней окружности с пятой нижней окружности и т.д..

Очерк поверхности на плоскостях П 2 и П 3 - гиперболы. Он представляет собой огибающие прямые.

На макете видно, что эта поверхность может превращаться в коническую или цилиндрическую, которые являются частными случаями однополостного гиперболоида.

 

 

 
 

 

 


10 9 8 7 6 5 4

11 12 1 2 3

8 6

 
 


 

9 5

 

10 4

       
   


11 3

       
   


 

12 2

 

 

Поверхность эта не развертываемая. Часто используется в технике при строительстве водонапорных башен, телевизионных мачт и других сооружений.

 

На прошлой лекции я предлагал построить эллипс по двум осям.

В учебнике Н.С. Кузнецова на 33 странице , задача 3.(Издание 1969 г.)

 

Для построении эллипса по его осям необходимо выполнить следующее.

Проведем две окружности

с центром в точке О ,

радиусами соответственно Е

равными половине

большой и малой осей К

эллипса.

Отметим точку Е ,

пересечения произвольной

прямой ОЕ с большей окруж-

ностью и точку N ее пересечения

с меньшей окружностью.

Через точку Е проведем линию параллельно малой оси эллипса,

а через точку N линию параллельно большой оси эллипса.

Эти прямые пересекаются в точке К, принадлежащей эллипсу. Кроме найденной точки эллипсу принадлежат уже заданные четыре точки расположенные на концах большой и малой осей.

 

К следующему разу в тетради для конспектов постройте параболу.

 

ПОВЕРХНОСТИ И ТЕЛА

(продолжение)

Ц И К Л И Ч Е С К И Е П О В Е Р Х Н О С Т И

 

Циклические поверхности, могут быть образованы движением в пространстве какой - либо окружности , постоянного или переменного радиуса при перемещении ее центра по криволинейной направляющей , а плоскость окружности остается перпендикулярной к этой кривой.

 

Под это определение в качестве частного случая могут подойти уже известные нам как линейчатые поверхности кругового конуса и цилиндра.

Действительно, если направляющая прямая, а окружность постоянного радиуса,

получим цилиндр.

Если направляющая прямая, а окружность монотонно увеличивается (уменьшается) поверхность будет коническая.

Давайте в качестве примера циклической поверхности рассмотрим трубчатую поверхность переменного радиуса.

 

Для этой поверхности надо задать во-первых закон направляющей, а во вторых закон изменения радиуса окружности.

 

Зададим изменение радиуса R по длине дуги графиком

 

 
 


R

R = f (L )

 

 
 


0 L

 

Определитель трубчатой поверхности переменного радиуса будет иметь вид F[ L , R = f (L) ].

 

 

m 2 m 1

 
 

 


m (n)

j

· O

O n O2 O1

 

Если радиус постоянный, то поверхность называется просто трубчатой.

 

Если направляющей будет окружность, то при движении по ней окружности постоянного радиуса получится торовая поверхность.

Более подробно мы остановимся на рассмотрении торовых поверхностей в разделе поверхности вращения.

Давайте приведем еще пример циклической поверхности.

Таким примером может служить поверхность цилиндрической винтовой пружины.

 
 

 


h

 
 


r

 
 


R

Подсчитаем число параметров которые задают некоторые частные виды циклических поверхностей.

Для цилиндра вращения это один параметр - радиус, для тора это два параметра это радиус окружности направляющей и радиус окружности которая перемещается в плоскости перпендикулярной направляющей, для трубчатой винтовой поверхности (поверхность пружины) это три параметра -

два радиуса (R, r ) и шаг (h).

 

П О В Е Р Х Н О С Т И В Р А Щ Е Н И Я

 

Поверхности вращения, могут быть образованы движением какой либо линии (образующей) вокруг закрепленной оси. Образующая может быть как плоской так и пространственной кривой.

Для поверхностей вращения закон движения постоянен, но разнообразны формы образующих.

В примере в качестве образующей примем кривую k состоящую из дуг двух окружностей ( R , r) , которая вращается вокруг оси j.

Любая точка кривой k описывает вокруг оси окружность лежащую в плоскости перпендикулярной оси и с центром принадлежащим оси. Эти окружности называют параллелями поверхности. Наибольшую из параллелей называют экватором, а наименьшую - горлом.

Если плоскость которой рассекают поверхность включает в себя ось, то получаемые кривые называют меридианами. Все меридианы равны между собой.

Образующая k лежит на одном из меридианов.

Меридиан расположенный во фронтальной плоскости и проектирующийся на фронтальную плоскость в натуральную величину называется главным меридианом.

Для построения главного меридиана образующую k вращают до совпадения с фронтальной плоскостью.

Если необходимо построить горизонтальную проекцию точки М принадлежащей поверхности, то достаточно провести через точку М` параллель m`1.

и найти ее горизонтальную проекцию m 1 на которой будет лежать М .

 

 

j ` ось

k`

 
 


параллель (m`1) горло(m`2) экватор (m`3)

·

M`

 

 


меридиан главный меридиан

 


Здесь окружности m 1

концентрические. m 2

k m 3

M

j

где :

m` , m , j` , j , M`, M,

k` , k соответственно, фронтальные и горизонтальные проекции.

 

К поверхностям вращения относится сфера (тело - шар).

Сфера может быть образована вращением окружности вокруг диаметра.

F { m ( m , j ; m Ù j Ì G ; C m Ì j )( m i = m Æ j )}.

Проецируется на все плоскости ввиде равных окружностей.

Экватор шара на горизонтальную плоскость проецируется ввиде круга, а на фронтальную плоскость ввиде прямой линии параллельной оси Х.

А2 А3

 
 

 


А1

 
 


 

 

Всякое сечение, параллельное экватору будет проецироваться на горизонтальную плоскость проекций ввиде окружности.

Воспользуемся этим для нахождения проекций точки А находящейся на поверхности сферы.

 

ТОР - поверхность вращения часто встречаемая в деталях машин.

Тор получается вращением окружности вокруг оси, расположенной в плоскости окружности, но не проходящей через ее центр.

Торовую поверхность вы видите на демонстрируемой модели. Это открытый тор. Окружность при вращении не пресекает ось и такой тор представляет собой кольцо.

Изобразим его основной чертеж.

 

j 2

A2

m 2

 

       
   

 


m 1 A 1

·

j 1

 

Запишем формулу этой поверхности

F{m( j , m ; m Ì Г É j; m Ë j )( m i = m Æ j)}.

 

Тор бывает закрытым. Это случай когда окружность касается оси вращения или пересекает ее. Образно эту поверхность можно представить ввиде яблока.

Формула этой поверхности Ф { m ( m, j, m Ì S É j; m Ç j) (mi = m Æ j)}.

 

Произвольная прямая пересекает тор в четырех точках. В аналитической геометрии доказывается , что тор это алгебраическая поверхность четвертого порядка.

 

j 2

m 2

A2

 

 

           
   
   
 

 


j 1 m1 A1

 

Коротко остановимся на поверхностях вращения второго порядка.

 

К ним относится эллипсоид вращения, образующийся вращением эллипса вокруг его оси. В зависимости от того какая ось эллипса выбрана осью вращения получаем сжатый или вытянутый эллипсоид вращения.

Вы уже освоили построение эллипса по двум заданным осям, теперь попробуйте изобразить в тетради основной чертеж эллипсоида вращения.

Хочу обратит ваше внимание, что в частном случае эллипс превращается в окружность , а эллипсоид в сферу.

 

ПАРАБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ ВРАЩЕНИЕМ ПАРАБОЛЫ ВОКРУГ ЕЕ ОСИ ОZ .

j2

 
 

 

 


A2

 
 

 


j1

A1

 

ОДНОПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ МОЖЕТ БЫТЬ ОБРАЗОВАН ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ МНИМОЙ ОСИ ОZ.

 

 
 

 

 


10 9 8 7 6 5 4

11 12 1 2 3

8 6

 
 


 

9 5

 

10 4

       
   


11 3

       
   


 

12 2

 

ДВУПОЛОСТНЫЙ ГИПЕРБОЛОИД ВРАЩЕНИЯ ОБРАЗУЕТСЯ ВРАЩЕНИЕМ ГИПЕРБОЛЫ ВОКРУГ ЕЕ ДЕЙСТВИТЕЛЬНОЙ ОСИ .

В отличие от однополостного он не является одновременно и линейчатой поверхностью. Он не может быть образован движением прямой.

Комплексный чертеж двуполостного гиперболоида прошу построить самостоятельно.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Введение в курс. Курс лекций Начертательная геометрия

Курс лекций Начертательная геометрияв которой рассматриваются следующие основные вопросы... Построение изображений или чертежей предметов... Решение геометрических задач в пространстве при помощи чертежей на плоскости...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: И плоскостью параллелизма.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ортогональный метод проецирования.
Метод проецирования заключается в том, что любая точка пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Ортогональное проецирование это такой метод когда про

Ведение новой плоскости проекций
Новую плоскость проекций располагают перпендикулярно к одной из заданных плоскостей. Введем новую плоскость проекций П4 перпендикулярную горизонтальной плоскости проекций П1 и не перпендикулярную к

Пространственные кривые лини
  В начертательной геометрии кривую линию часто рассматривают как траекторию описанную движущейся точкой. Кривая линия может быть плоской или пространственной. Все точки плоско

Плоские кривые линии.
Среди плоских алгебраических кривых особо следует отметить кривые второго порядка. Эти кривые иногда рассматривают как плоские сечения поверхностей - “конические сечения”. Рассмот

Прямые уровня.
Это прямые параллельные плоскостям проекций. Пряма параллельная горизонтальной плоскости проекций называется горизонтальной прямой уровня или горизонталью и обозначается h.

Проецирующие прямые.
  Прямая , перпендикулярная горизонтальной плоскости проекций , является горизонтально-проецирующей прямой. Отрезок этой прямой АВ.     Z

Параллельные прямые.
Параллельные прямые - это прямые , лежащие в одной плоскости и никогда не пересекающиеся , сколько бы их не продлевали. Параллельные прямые имеют параллельные одноименные проекции. Обычно

Пересекающиеся прямые.
Это прямые лежащие в одной плоскости и имеющие одну точку пересечения. Линии пересекающиеся в пространстве проектируются в виде пересекающихся проекций, причем проекции точки пересечения б

Скрещивающиеся прямые.
  Это прямые не параллельные и не пресекающиеся между собой. Эти прямые не имеют общей точки и не лежат в одной плоскости.

Проецирование прямого угла.
  Прямой угол между двумя пресекающимися прямыми проецируется в натуральный размер только в том случае , когда одна из сторон угла параллельна плоскости проекций. Если одна сторона пр

Преобразование комплексного чертежа .
(Первая и вторая основные задачи преобразования чертежа).   Преобразование чертежа используется при решении задач связанных с измерениями геометрических обра

Рассмотрим решение второй основной задачи преобразования чертежа
на примере: Изобразим на чертеже горизонталь h. Необходимо ввести новую плоскость проекций так, чтобы по отношению к ней горизонталь заняла проецирующие положение

Проецирование элементов, определяющих плоскость.
При ортогональном проецировании любая плоскость может быть задана на чертеже проекциями трех точек, не лежащих на одной прямой ; проекциями прямой и точки, не лежащей на данной прямой; проекциями д

Точка в плоскости.
Точка принадлежит плоскости, если лежит на прямой принадлежащей плоскости. Пусть плоскость задана пересекающимися прямыми а и b. Имеется горизонтальная проекция точки А1 необходим

Прямая параллельная плоскости.
  Если прямая АВ параллельна прямой лежащей в некоторой плоскости, то она параллельна этой плоскости. Если необходимо через заданную точку провести прямую параллельну

Параллельные плоскости.
Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Поэтому, если требуется через точку

Пересекающиеся плоскости.
  Если плоскости не параллельны, то они обязательно пересекутся. Если плоскости занимают частное положение в пространстве, то положение линии пересечения определить довольно

Если прямая не параллельна плоскости, то она пересекает ее под тем или иным углом.
Задача на пересечение прямой с плоскостью является одной из основных задач. Алгоритм или план решения таких задач будет следующий. 1) Заключаем отрезок прямой во вспомогательную п

Если необходимо найти точку пересечения перпендикуляра с плоскостью, то СМ задачу на пересечение прямой с плоскостью.

Винтовые поверхности.
  Винтовой поверхностью называется поверхность, которая описывается образующей при ее винтовом движении. Образующие могут быть как кривыми так и прямыми линиями.

Косой открытый геликоид.
Название “косой” связано с тем, что угол между осью и образующей не равен прямому. “Открытый” означает, что образующая с осью скрещивается. Пусть в первоначальном положении образующая АВ п

Сечение гранных тел проецирующими плоскостями.
При пересечении поверхностей тел проецирующими плоскостями, одна проекция сечения совпадает с проекцией проецирующей плоскости. Рассмотрим чертеж шестиугольной призмы рассеченной фронтальн

Сечение тел вращения.
Рассмотрим на примере конуса. Конус может иметь в сечении пять различных фигур. Треугольник - если секущая плоскость пересекает конус через вершину по двум образующим. Окружность

Сечение гранных тел плоскостью общего положения
Плоскость задана пересекающимися прямыми (горизонталью и фронталью). Геометрическое тело - трехгранная призма.    

Х 1,4 А4 C4
    Построи

ГЕОМЕТРИЧЕСКИХ ТЕЛ
Пересечение двух поверхностей находят : 1) способом вспомогательных секущих плоскостей, 2) способом сфер или вспомогательных шаровых поверхностей.   В перву

Пересечение двух поверхностей способом сфер или вспомогательных шаровых поверхностей.
Для построения линии пересечения некоторых поверхностей не рационально использовать плоскости в качестве вспомогательных секущих поверхностей. Если пересекаются две поверхности вращения об

ТОЧКУ ПЕРЕСЕЧЕНИЯ ОСЕЙ ПОВЕРХНОСТЕЙ ПРИНИМАЕМ ЗА ЦЕНТР ВСПОМОГАТЕЛЬНЫХ СФЕР.

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ.
Нахождение точек пересечения прямой линии с поверхностью производится следующим методом. Через заданную прямую проводят вспомогательную поверхность. Находят линию пересечения вспо

Пересечение прямой и поверхности.
(Повторение и продолжение).   Для контроля усвоения материала хочу предложить выпо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги