рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Потери связанные с отрывом потока

Потери связанные с отрывом потока - раздел Математика, Глава 2 – Базовые уравнения теории лопаточных машин и общие закономерности их рабочего процесса Качественно Спроектированный Венец Обтекается Потоком Таким Образом, Что Лини...

Качественно спроектированный венец обтекается потоком таким образом, что линии тока на расчетном режиме повторяют форму профиля. Однако часто поток отрывается от поверхности. Обычно это происходит из-за отклонения угла натекания от расчетного значения при изменении режима работы турбомашины или других причин. В местах отрыва и за ними образуются вихри. На их поддержание расходуется энергия, которая уже не используется на выполнение основной функции турбомашины. Она называется потерями на отрыв потока.

Потери на отрыв зависят от угла натекания потока на решетку. Если он близок к значению конструктивного угла, то потерь, связанных с отрывом, не наблюдается. Однако, если угол натекания отклонится от конструктивного угла, то появляется отрыв и потери связанные с ним. При положительном угле атаки отрыв происходит на спинке, при отрицательном – с корытца.

Причем в обоих случаях отрыв происходит вблизи входной кромки. Наличие отрыва существенно увеличивает профильные потери.

 

Рисунок 2.45 – Отрыв потока на корытце турбинной лопатки

Отрыв со спинки более разрушителен для структуры потока в межлопаточном канале из-за того, что он центробежными силами оттесняется от поверхности лопатки и активно взаимодействует с ядром потока. Отрыв со стороны корытца прижимается к поверхности лопатки центробежными силами и там локализуется, вызывая меньшие потери энергии.

Угол атаки, при котором поток оторвется от профиля, определяется радиусом входной кромки лопатки: чем она толще, тем больше угол атаки при котором происходит отрыв (профиль более атакоустойчив). Входные кромки турбинных лопаток обычно имеют значительную толщину. Поэтому качественно спрофилированная турбинная лопатка допускает работу при углах атаки до 10° без существенного увеличения потерь. Компрессорные лопатки имеют тонкие входные кромки. Их радиус исчисляется несколькими десятыми долями миллиметра. По этой причине отклонение угла потока от значения лопаточного угла даже на 2...4° приводит к появлению существенных потерь.

Потери на отрыв (если они возникают) являются одной из наиболее существенных составляющих общих потерь энергии в лопаточном венце.

Атакоустойчивость также зависит от относительного шага решетки. С ее уменьшением атакоустойчивость растет и наоборот.

 

Рисунок 2.46 – Типичная зависимость величины профильных потерь от угла натекания потока на решетку для компрессора (1) и турбины (2)

– Конец работы –

Эта тема принадлежит разделу:

Глава 2 – Базовые уравнения теории лопаточных машин и общие закономерности их рабочего процесса

В данном разделе будут подробно рассмотрены основные уравнения ле жащие в основе теории лопаточных машин Рассматриваемые уравнения пред ставляют... Для упрощения получаемых соотношений при выводе уравнений будет по лагаться... Сделанные допущения позволят упростить получение и анализ рассматри ваемых уравнений Однако это принципиально не...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Потери связанные с отрывом потока

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Параметры торможения
Параметры состояния неподвижного газа, как известно, включают в себя давление p, температуру T и плотность r. Эти параметры называют истинными или термодинамическими. Ин

Безразмерные скорости в теории турбомашин
В теории турбомашин не удобно пользоваться физической скоростью. Это связано с тем, что на практике важнее знать не саму величину скорости, а то как она соотносится со скоростью звука. Дело в том,

Газодинамические функции
Газодинамические функции представляют собой безразмерные функции приведенной скорости l или числа Маха М, равные отношениям важнейших параметров, характеризующих одномерный поток в ра

Уравнение неразрывности
Уравнение неразрывности является записью закона сохранения массы применительно к течению рабочего тела в лопаточных машинах. Рассмотрим участок стационарного потока рабочего тела в канале

Уравнение энергии в механической форме в абсолютном движении
Рассмотрим установившееся стационарное течение рабочего тела через произвольную лопаточную машину. В потоке вблизи поверхности пера лопатки выделим произвольную бесконечно малую частицу, движущуюся

Уравнение энергии в механической форме в относительном движении
Рассмотрим установившееся стационарное течение рабочего тела через рабочее колесо произвольной лопаточной машины. Рабочее колесо вращается с постоянной угловой скоростью w. В потоке вблизи поверхно

Уравнение энергии в тепловой форме в абсолютном движении
Запишем уравнение сохранение энергии в механической форме в абсолютном движении в дифференциальном виде (2.3.6). При этом учтем, что плотность обратно пропорциональна удельному объему :

Уравнение энергии в тепловой форме в относительном движении
Запишем уравнение сохранение энергии в механической форме в относительном движении в дифференциальном виде (2.3.18). При этом учтем, что плотность обратно пропорциональна удельному объему :

Уравнение количества движения
В процессе проектирования ЛМ часто возникает необходимость определения усилий, действующих со стороны потока на лопатки (или наоборот). Для решения таких задач можно использовать известный из теоре

Уравнение моментов количества движения
Из теоретической механики известно, что равнодействующая всех сил R, действующих на тело массой mT и скоростью сT, отстоящее от оси враще

Влияние частоты вращения на работу ступени
Влияние частоты вращения n на работу ступени турбомашины наиболее наглядно иллюстрируется на примере наземных ГТУ НК-36 и НК-37 разработанных в ОАО СНТК им. Н.Д.Кузнецова. Обе

Понятие о треугольниках скоростей
Влияние разности на работу ступени и способы ее увеличения целесообразно рассматривать, опираясь на треугольники и план скоростей. Поэтому вначале разберемся, что это такое.  

Влияние разности на работу ступени
Величина разности проекций абсолютных скоростей определяется углом поворота потока в решетке ЛВ и может быть легко показана на плане скоростей. На рисунке 2.36, а приведен план скоростей компрессор

Основные закономерности течения газа в межлопаточных каналах и механизмы возникновения потерь
Как отмечалось ранее, часть энергии подводимой/отводимой в турбомашине расходуется на преодоление гидравлических потерь в проточной части. Рассмотрим, куда и почему расходуется энергия при прохожде

Потери трения и концевые потери
При течении вязкого газа в межлопаточном канале на поверхности лопатки и на концевых поверхностях образуется пограничный слой. Это тонкий слой газа, непосредственно соприкасающийся с поверхн

Кромочные потери
За выходными кромками лопаток конечной толщины образуется разрежение (донный эффект). В эту зону разрежения стекают пограничные слои и подсасываются частички из ядра потока (рисунок 2.43). За решет

Волновые потери
Скорость газа в решетке турбомашин может достигать и даже превышать скорость звука. В компрессорах сверхзвуковая скорость наблюдается на входе в решетку. В турбинах – в косом срезе. Торможение свер

Вторичные потери
Важное влияние на общий уровень потерь в решетке турбомашины оказывают явления, происходящие вблизи втулочной и периферийной концевых поверхностей. Течение в этих областях носит сложный характер. И

Потери в радиальном зазоре
В проточной части турбомашин между торцами рабочих лопаток и корпусными деталями всегда имеется конструктивный зазор . Этот зазор необходим для того, чтобы исключить касание ротора о статор при вра

Потери в осевом зазоре
Влияние осевого зазора связано с образованием закромочных следов за лопатками, а также наличием градиента давлений между спинкой и корытцем. Эти факторы приводят к тому, что поле скоростей за решет

Дисковые потери
Диск рабочего колеса со всех сторон окружен рабочим телом. Поэтому при вращении диска на его поверхности образуется пограничны й слой, силы вязкого трения в котором оказывают тормозящее действие.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги