рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Внутренняя энергия

Внутренняя энергия - раздел Физика, КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ Когда Приходится Использовать Термоди­намику Для Дела, То Оказывается, Что Он...

Когда приходится использовать термоди­намику для дела, то оказывается, что она очень трудный и сложный предмет. В этой книге, однако, мы не будем залезать в самые дебри. Эта область особенно интересна для химиков и инженеров, и тем, кому захочется получше познакомиться с ней, следует обратиться к физи­ческой химии или инженерной термодинамике. Есть еще ряд хороших справочных книг, в кото­рых эта тема обсуждается более подробно.

Термодинамика сложна потому, что каждое явление она позволяет описывать многими способами. Если нам нужно описать поведение газа, то мы можем исходить из того, что его давление зависит от температуры и объема, а можно предположить, что объем зависит от давления и температуры. То же самое и с внутренней энергией U: можно сказать, что она определяется температурой и объемом, стоит только выбрать именно эти переменные, но можно говорить о зависимости от температуры и давления или от давления и объема и т. д. В предыдущей главе мы познакомились с дру­гой функцией температуры и объема, называе­мой энтропией S. И теперь ничто не помешает нам построить другие функции этих переменных. Например, функция U-TS тоже зависит от температуры и объема. Таким образом, нам при­ходится иметь дело с большим количеством разных величин, зависящих от разнообразных комбинаций переменных.

Чтобы упростить понимание этой главы, договоримся с самого начала выбрать в качестве независимых переменных температуру и объ­ем. Химики используют для этого температуру и давление, потому что их легче измерять и контролиро­вать в химических реакциях. Но мы используем повсюду в этой главе температуру и объем и изменим этому только в одном месте, чтобы посмотреть, как совершается переход к химическим переменным.

Итак, сначала рассмотрим только одну систему независимых переменных — температуру и объем. Затем нас будут интере­совать только две функции этих переменных: внутренняя энер­гия и давление. Все другие термодинамические функции можно получить с помощью этих двух, но не обязательно это делать именно сейчас. Даже после таких ограничений термодинамика останется еще трудным предметом, но все же уже не столь невоз­можным для понимания!

Сначала немного займемся математикой. Если величина есть функция от двух переменных, то дифференцировать ее придется осторожнее, чем мы это делали раньше, имея дело с одной пере­менной. Что мы понимаем под производной давления по темпе­ратуре? Изменение давления, сопровождающее изменение тем­пературы, разумеется, зависит от того, что случилось с объемом, пока менялась температура. Прежде чем понятие производной по температуре обретет ясный смысл, надо сказать что-то опре­деленное об изменении объема. Например, можно спросить, какова скорость изменения Р относительно Т при постоянном объеме. Тогда отношение изменений обеих этих величин, по существу, обычная производная, которой привыкли присваи­вать символ dP/dT. Мы обычно используем особый символ дР/дТ, он напоминает нам, что Р зависит, кроме Т, еще и от переменной V, и эта переменная не изменяется. Чтобы подчерк­нуть тот факт, что V не изменяется, мы не только используем символ д, но еще пометим индексом остающуюся постоянной переменную (дР/дТ)у. Конечно, поскольку имеются только две независимые переменные, то это обозначение излишне, но оно, быть может, поможет нам легче пройти сквозь термодинамиче­ские дебри частных производных.

Предположим, что функция f(x, у) зависит от двух незави­симых переменных х и у. Под символом (дf/дх)у мы понимаем самую обычную производную, получаемую общепринятым спо­собом, если у постоянна:



Аналогично определяется и

 

Например, если f(x, у)=х2+ух, то (df/dx)y=2x+y, а (дfду)х=х. Мы можем распространить это на старшие производные:

д2f/дy2 или д2f/дудх.

Последний случай означает, что сначала f продифференцировано по х, считая у постоянным, а затем ре­зультат продифференцирован по у, но теперь постоянным стало х. Порядок дифференцирования не имеет значения:

д2fldxdy=д2f/дyдx.


Нам придется подсчитывать изменение Df, происходящее с f(x, у), если х переходит в х+Dх, а у переходит в y+Dy. Будем предполагать, что Dx и Dy бесконечно малы:

 

Последнее уравнение и есть основное соотношение, связываю­щее приращение Df с Dx и Dy.


Посмотрим, как используется это соотношение; для этого вычислим изменение внутренней энергии U(Т,V), если тем­пература Т переходит в Т+DT, а объем V переходит в V+DV. Используем формулу (45.1) и запишем

 

 

В предыдущей главе мы нашли другое выражение для изме­нения внутренней энергии DU; тогда к подводимому газу прибавлялось тепло DQ:

DU==DQ-РDV. (45.3)

Сравнив (45.2) и (45.3), можно было бы подумать, что P=(дU/дV)T, но это не так. Чтобы получить верный результат, сначала предположим, что газ получает тепло DQ, причем объем его не изменяется, так что DV=0. Если DV=0, то уравнение (45.3) говорит нам, что DU=DQ, а уравнение (45.2) утверждает, что DU=(дU/дT)VDT, поэтому (дU/дT)v=DQ/DT. Отношение DQ/DT—количество тепла, которое нужно подвести к телу, чтобы изменить его температуру на один градус, удерживая объем по­стоянным,— называется удельной теплоемкостью при посто­янном объеме и обозначается символом CV, Таким образом, мы
показали, что

 

Теперь снова подведем к газу тепло DQ, но на этот раз догово­римся, что температура газа останется постоянной, а объему мы позволим измениться на DV. В этом случае анализ сложнее, но мы можем вычислить DU, используя аргументы Карно, для чего нам придется снова призвать на помощь цикл Карно из предыдущей главы.

Диаграмма давление — объем для цикла Карно изображена на фиг. 45.1. Мы уже показали, что полная работа, совершаемая газом при обратимом цикле, равна DQ(DT/T), где DQ — тепло, подводимое к газу при температуре Т во время изотермического расширения от V до V+DV, а Т—DТ — это конечная темпе­ратура, которой достигает газ при адиабатическом расширении на втором этапе цикла. Сейчас мы покажем, что эта работа равна, кроме того, заштрихованной площади на фиг. 45.1. Работа газа

во всех случаях жизни равна ∫PdV; она положительна, если

газ расширяется, и отрицательна, когда он сжимается. Если вычертить зависимость Р от V, то изменения Р и V изобразятся кривой, в каждой точке которой определенному значению Р соответствует определенное значение V. Работа, произведенная газом, пока его объем изменяется от одного значения до другого

(интеграл ∫PdV),— это площадь под кривой, соединяющей на­чальное и конечное значения V. Применим эту идею к циклу Карно и убедимся, что если обойти цикл, помня о знаке совер­шенной газом работы, то чистая работа газа будет равна заштри­хованной на фиг. 45.1 площади.


Фиг. 45.1. Диаграмма Р — V для цикла Карно.

Кривые, помеченные Т и Т—DТ,— изотермы; крутые кривые между ни­ми — адиабаты. Когда газ изотермиче­ски расширяется при температуре Т, он получает тепло DQ и увеличивает свой объем на DV; DР—изменение давле­ния при постоянном объеме, темпера­тура в это время падает с Т до Т—DT.

 

А теперь вычислим эту площадь чисто геометрически. Цикл, который был использован для получения фиг. 45.1, отличается от цикла, описанного в предыдущей главе тем, что теперь DQ и DT бесконечно малы. Наши адиабаты и изотермы очень близки друг к другу, поэтому фигура, описанная жирными линиями на фиг. 45.1, приближается к параллелограмму, когда прира­щения DQ и DТ стремятся к нулю. Площадь этого параллело­грамма в точности равна DVDP (где DV — изменение объема, когда к газу подводится энергия DQ при постоянной темпера­туре, а DР — изменение давления при изменении температуры на DT и постоянном объеме). Легко показать, что заштрихован­ная площадь на фиг. 45.1 равна площади, ограниченной пунк­тиром на фиг. 45.2. А эту фигуру легко превратить в прямо­угольник со сторонами DР и DV, для чего нужно лишь вырезать из нее треугольники и сложить их немного иначе.
Соберем все наши выводы вместе.

 

Выражение (45.5) содержит в себе суть результатов, следую­щих из аргументов Карно. Всю термодинамику можно вывести из (45.5) и первого закона, содержащегося в уравнении (45.3). Выражение (45.5)— это, в сущности, второй закон, хотя впер­вые Карно сформулировал его несколько иначе, поскольку не пользовался нашим определением температуры.

А теперь можно приступить к вычислению (дUlдV)T. На­сколько изменится внутренняя энергия U, если объем изменится на DV? Во-первых, внутренняя энергия U меняется за счет подводимого тепла и, во-вторых, за счет совершаемой работы. Подводимое тепло, согласно (45.5), равно

DQ=(dP/дT)VDV,


а совершаемая над веществом работа равна —PDV. Поэтому изменение DU складывается из двух кусков

 

 


Поделив обе стороны на DV, мы найдем скорость изменения U относительно V при постоянной Т

 

 

В нашей термодинамике, где есть только две переменные, Т и V, и только две функции, Р и U, уравнения (45.3) и (45.7) — это основные уравнения, из которых можно вывести все последующие результаты.

– Конец работы –

Эта тема принадлежит разделу:

КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ

На сайте allrefs.net читайте: "КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ"...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Внутренняя энергия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства вещества
С этой главы мы начнем изучение новой темы, которая займет у нас довольно много времени. Мы начнем анализ свойств вещества с физической точки зрения. Зная, что вещество построено из большого

Давление газа
Каждый знает, что газ оказывает давление. Но отчего? В этом надо разобраться как следует. Если бы наши уши были намного чувствительнее, чем они есть на самом деле, мы бы все время слышали страшный

Сжимаемость излучения
Приведем еще один пример из кинетической теории газов; он не особенно интересует химиков, но очень важен для астро­номов. Внутри нагретого до высокой температуры ящика име­ется огромное число фотон

Температура и кинетическая энергия
До сих пор мы не имели дела с температурой; мы созна­тельно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно гово­рим, что газ при это

Закон идеального газа
Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно про­изведению полного числа атом

Экспоненциальная атмосфера
Мы уже изучали некоторые свойства боль­шого числа сталкивающихся атомов. Наука, которая занимается этим, называется кине­тической теорией, и она описывает свойства вещества, рассматривая, как сталк

Закон Болъцмаиа
Отметим здесь тот факт, что числитель показателя экспонен­ты в равенстве (40.1) — это потенциальная энергия, атома. Поэ­тому можно в нашем случае сформулировать закон следующим образом: плот

Испарение жидкости
В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами

Распределение молекул по скоростям
Обсудим теперь распределение молекул по скоростям, по­тому что интересно, а иногда и полезно знать, какая часть мо­лекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те

Удельные теплоемкости газов
Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже гово­рили, что если U—внутренняя энергия N молекул, то фор­мула pV=NkT=(g-1)

Поражение классической физики
Итак, приходится сказать, что мы натолкнулись на труд­ности. Можно соединить атомы не пружинкой, а чем-нибудь другим, но оказывается, что это только увеличит значение g. Если пустить в ход другие в

Равнораспределение энергии
Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под мик­роскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достато

Тепловое равновесие излучения
Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что у нас имеется заряженный осциллятор, вроде того, о котором мы говорили, когд

Равномерное распределение и квантовый осциллятор
Только что отмеченная трудность — это еще одна сторона проблемы непрерывности в классической физике, она началась с непорядка в теплоемкостях газов, а потом эта проблема сконцентрировалась на распр

Случайные блуждания
Попробуем понять, насколько меняется положение танцу­ющей частицы за время, во много раз большее, чем промежуток между двумя ударами. Посмотрим на маленькую частицу, которая вовлеклась в броуновско

Испарение
Эта глава посвящена дальнейшим приме­нениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или

Термоиониая эмиссия
Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой ради

Тепловая ионизация
Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть,

Химическая кинетика.
При химических реакциях происходит нечто похожее на «ионизаци

Законы излучения Эйнштейна
Обратимся теперь к интересной задаче, похожей на только что о

Столкновения молекул
До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ сл

Средняя длина свободного пробега
Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно оп­ределить, далеко ли успеет уйти частица между столкновениями. Если мы знае

Скорость дрейфа
Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства осталь­ных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отлича

Нонная проводимость
Применим наши результаты к частному случаю. Предпо­ложим, что в сосуде, заполненном газом, содержатся также ионы — атомы или молекулы с избыточным электрическим зарядом. Схематически это выглядит т

Молекулярная диффузия
Перейдем к другой задаче, для которой нам придется не­сколько изменить метод анализа, — к задаче о диффузии. Пред­положим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
Jx=lv(dna/dx) (43.24) Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Теплопроводность
Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху

Тепловые машины; первый закон
До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся

Второй закон
А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерян­ная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при темп

Обратимые машины
Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения.

Коэффициент полезного действия идеальной машины
А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1 и Т2 . Ясно, что W пропорционально Q1, ибо ес

Термодинамическая температура
Пока мы не будем делать попыток выразить эту возрастаю­щую функцию в терминах делений знакомого нам ртутного гра­дусника, а взамен определим новую температурную шкалу. Когда-то «температура»

Энтропия
Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин Q1/T1=Q2/T2, и тепло Q1 при температуре

Применения
Теперь обсудим смысл уравнения (45.7) и посмотрим, почему оно дает ответ на поставленные в предыдущей главе вопросы. Мы занимались рассмотрением такой задачи: в кинетической теории ясно, что рост т

Уравнение Клаузиуса— Клайперона
Испарение жидкости — это еще одна область, в которой можно применить наши результаты. Предположим, что мы вдвигаем поршень в цилиндр с каким-то веществом. Естественно задать себе вопрос: к

Как действует храповик
В этой главе мы поговорим о храповике и собачке — очень простом устройстве, позволяю­щем оси вращаться только в одном направлении. Возможность получать одностороннее вращение заслуживает глубокого

Храповик как машина
Пойдем дальше. Рассмотрим другой пример: температура вертушки T1, а температура храповика Т2; T2 меньше Т1. Так как храповик хол

Обратимость в механике
Что же это за глубокий механический принцип, который утверждает, что при постоянстве температуры и достаточно про­должительной работе наше устройство не уйдет ни назад, ни вперед? Очевидно, мы полу

Необратимость
Все ли законы физики обратимы? Конечно, нет! Попробуйте-ка, например, из яичницы слепить обратно яйцо! Или пустите фильм в обратную сторону — публика в зале тотчас же начнет смеяться. Необратимость

Порядок и энтропия
Итак, мы должны теперь потолковать о том, что понимать под беспорядком и что — под порядком. Дело не в том, что по­рядок приятен, а беспорядок неприятен. Наши смешанные и несмешанные газы отличаютс

Распространение звука
Давайте выведем теперь свойства распространения звука между источником и приемником, основываясь на законах Нью­тона, но не учитывая при этом взаимодействия звука с источ­ником и приемником. Обычно

Волновое уравнение
Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами: I. Газ движется, и плотность его меняется. II. При изменении плотности меняется и давление. I

Решения волнового уравнения
Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмуще­ние, движется с постоянно

Скорость звука
При выводе волнового уравнения для звука мы получили формулу, которая связывает при нормальном давлении скорость движения волны и относительное изменение давления с плотностью: с2

Сложение двух волн
Не так давно мы довольно подробно обсуж­дали свойства световых волн и их интерферен­цию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом пред­полагалось, что частоты источн

Некоторые замечания о биениях и модуляции
Предположим теперь, что нас интересует интенсивность волны, описываемой уравнением (48.7). Чтобы найти ее, нужно взять квадрат абсолютной величины либо правой, либо левой части этого уравнения. Дав

Боковые полосы
Описанную выше модулированную волну математически можно записать в виде S=(1+bcoswmt)coswct, (48.9) где (wс— несущая частота, а w

Локализованный волновой пакет
Следующий вопрос, который мы хотим обсудить,— это ин­терференция волн как в пространстве, так и во времени. Пред­положим, что в пространстве распространяются две волны. Вы, конечно, знаете, что рас

Амплитуда вероятности частиц
Рассмотрим еще один необычайно интересный пример фа­зовой ско

Волны в пространстве трех измерений
Мы заканчиваем наше обсуждение волн несколькими об­щими замечаниями о волновом уравнении. Эти замечания, при­званные дать нам картину того, чем нам предстоит заниматься в будущем, вовсе не претенду

Собственные колебания
Вернемся теперь к другим очень любопытным примерам биений, которые немного отличаются от того, что мы рассмат­ривали до сих пор. Представьте себе два одинаковых маятника, которые связаны между собо

Отражение волн
В этой главе мы рассмотрим ряд замеча­тельных явлений, возникающих в результате «заключения» волны в некоторую ограничен­ную область. Сначала нам придется устано­вить несколько частных фактов, отно

Волны в ограниченном пространстве и собственные частоты
Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегос

Двумерные собственные колебания
Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волн

Связанные маятники
Напоследок необходимо подчеркнуть, что гармоники возни­кают не только в сложных непрерывных системах, но и в очень простых механических системах. Хорошим примером этого служит рассмотренная в преды

Линейные системы
Давайте теперь подытожим рассмотренные выше идеи, которые все являются аспектами, по-видимому, наиболее об­щего и удивительного принципа математической физики. Если у нас есть линейная система, хар

Музыкальные звуки
Говорят, что Пифагор первый обнаружил тот интересный факт, что одновременное зву­чание двух одинаковых струн различной длины приятнее для слуха, если длины этих струн относятся друг к другу

Ряд Фурье
В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне воз­никают различные собственные гармоники и что любое частное колебание, которое только

Качество и гармония
Теперь мы уже можем описать, чем определяется «качество» музыкального тона. Оно определяется относительным количе­ством различных гармоник, т. е. относительными величинами а и b. Тон,

Коэффициенты Фурье
Вернемся теперь к утверждению о том, что каждую ноту, т. е. любое периодическое колебание, можно представить в виде надлежащей комбинации гармоник. Хотелось бы знать, как можно найти нужную

Теорема об энергии
Энергия волны пропорциональна квадрату ее амплитуды.

Нелинейная реакция
Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важ­ность, но это уже относится к области нелинейных эффектов. Во всех рассмотренны

Волна от движущегося предмета
Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны.

Ударные волны
Зачастую скорость волны зависит от ее амплитуды, и в слу­чае звука эта зависимость возникает следующим образом. Движущийся в воздухе предмет должен сдвигать его со своего пути, вызывая при этом воз

Волны в твердом теле
Следующий тип волн, о которых нам следует поговорить,— это волны в твердом теле. Мы уже рассмотрели звуковые волны в жидкости и газе, а между ними и звуковыми волнами в твер­дом теле имеется непоср

Поверхностные волны
Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,— это волны на поверхности воды. Вы скоро убедитесь, что более неудачног

Симметрия и законы сохранения
Даже на этом уровне симметрии физических законов очень увлекательны, но оказывается, что они куда более интересны и удивительны при переходе к квантовой механике. Факт, причи­ну которого я не могу

Зеркальное отражение
Перейдем к следующему вопросу, который будет занимать нас до конца главы,— это симметрия при отражении в про­странстве. Проблема заключается в следующем: симметричны ли физические законы при

Полярный и аксиальный векторы
Пойдем дальше. Вы видели, что в физике имеется масса при­меров применимости правила правой и левой руки. В самом деле, когда мы изучали векторный анализ, то узнали о правиле пра­вой руки, которым н

Какая же рука правая?
Дело в том, что существует один интересный факт: в любом явлении правило правой руки всегда встречается два или вооб­ще четное число раз, и в результате любое явление всегда выглядит симметричным.

Четность не сохраняется!
Оказывается, что законы тяготения, законы электричества и маг

Антивещество
Когда исчезает одна из симметрии, то первым делом нуж­но немедленно обратиться к списку известных или предположен­ных симметрии и посмотреть, не может ли еще нарушиться ка­кая-то из них. Мы не упом

Нарушенная симметрия
А что нам делать с законами, которые только приблизительно симметричны? Самое удивительное здесь то, что в широкой об­ласти важнейших явлений—ядерные силы, электромагнитные явления и даже не

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги