рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Нелинейная реакция

Нелинейная реакция - раздел Физика, КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ Наконец, В Теории Гармоник Есть Одно Очень Важное Явление, Которое Необходимо...

Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важ­ность, но это уже относится к области нелинейных эффектов. Во всех рассмотренных нами до сих пор системах все предпола­галось линейным; реакция на действие силы, например пере­мещение или ускорение, всегда была пропорциональна силам. Токи в электрической цепи были тоже пропорциональны на­пряжениям и т. д. Теперь мы хотим рассмотреть случаи, когда строгая пропорциональность отсутствует. Представим на ми­нуту устройство, реакция которого xвыход=xвых в момент t опре­деляется внешним воздействием xвход = xвх в тот же момент t.

Например, xвх может быть силой, а хвых— перемещением, или хвхток, а xвых— напряжение. Если бы устройство было ли­нейное, то мы бы получили

xвых(t)=Kxвх(t), (50.24)

где К — постоянная, не зависящая ни от t, ни от хек. Предполо­жим, однако, что устройство только приблизительно линейное, т. е. на самом деле нужно писать

xвых(t)=K[xвх(t)+ex2вх(t)]. (50.25)

где e мало по сравнению с единицей. Такие линейная и нелиней­ная реакции показаны на фиг. 50.4.

 


 

 

Фиг. 50.4. Реакции, а — линейная,

xвых=kxвх; б—нелинейная, xвых =k(хвх+ex2вх).


Нелинейная реакция приводит к нескольким важным прак­тическим следствиям. Некоторые из них мы сейчас обсудим. Посмотрим сначала, что получается, если пропустить через по­добное устройство «чистый» тон. Пусть xвх=coswt. Если мы по­строим график зависимости xвых от времени, то получим сплош­ную кривую, показанную на фиг. 50.5.

 

Фиг. 50.5. Реакция нелинейного устройства на входящий сигнал coswt.

Для сравнения показана линейная реак­ция.

 

Для сравнения там же проведена пунктирная кривая, представляющая реакцию ли­нейной системы. Мы видим, что на выходе получается уже не косинусообразная функция. Она более острая в вершине и более плоская в основании. Поэтому мы говорим, что выходной сигнал искажен. Однако, как известно, такая волна не будет уже чистым тоном, а приобретает какие-то высшие гармоники Можно найти эти гармоники. Подставляя xвх=coswt в уравнение (50.25), получаем

хвых=К(coswt+ecos2wt). (50.26) Используя равенство cos2q = 1/2(l-cos2q), находим

xвых=K(coswt+ e/2-e/2cos2wt) . (50.27)

Таким образом, в выходящей волне присутствует не только основ­ная компонента, которая была во входящей волне, но и некоторая доля второй гармоники. Кроме того, в выходящей волне появился постоянный член К(e/2), который соответствует сдви­гу среднего значения, показанному на фиг. 50.5. Эффект воз­никновения сдвига среднего значения называется выпрямлением. Нелинейное устройство будет выпрямлять и давать на выходе высшие гармоники. Хотя предположенная нами нелинейность только добавляет вторую гармонику, нелинейность высшего

порядка, например х3вх или x4вх, даст уже более высокие гармо­ники.

Другим результатом нелинейной реакции является моду­ляция. Если входящая функция содержит два (или больше) чистых тона, то на выходе получатся не только их гармоники, но и другие частотные компоненты. Пусть хвхcosw1t+Bcosw2t, причем w1 и w2 не находятся в рациональном отношении друг к другу. Тогда в дополнение к линейному члену (равному произ­ведению К на входящую волну) на выходе мы получим

xвых=Ke(Acosw1t+Bcosw2t)2, (50.28)

хвых=Кe(А2cos2w1t+В2 cos2w2t+2AB cosw1tcosw2t). (50.29)

Первые два члена в скобках уравнения (50.29) — старые зна­комые. Они дают нулевую и вторую гармоники, но последний член — это уже нечто новое.

На этот новый «перекрестный член» АВcosw1tcosw2t можно смотреть с двух сторон. Во-первых, если две частоты сильно отличаются друг от друга (например, w1 много больше w2), то мы можем считать, что перекрестный член представляет косинусообразные колебания с переменной амплитудой. Я имею в виду такую запись:

АВ cosw1tcosw2t=C(t)cosw1t, (50.30)

где

С(t)=АВсоsw2t. (50.31)

Мы говорим, что амплитуда колебаний cosw1 модулируется с частотой w2.

Во-вторых, этот же перекрестный член можно рассматри­вать с другой точки зрения:

ABcosw1tcosw2t= AB/2[cos (w1-w2) t+cos(w1 -+w2) t], (50.32)

т. е. можно сказать, что возникают две новые компоненты, одна из которых равна сумме частот w1+w2, а другая — разности

Таким образом, существуют два различных, но эквивалент­ных способа толкования одного и того же явления. В предель­ном случае w1>>w2 можно связать эти две различные точки зре­ния, заметив, что поскольку (w1+w2) и (w1-w2) близки друг к другу, то между ними должны наблюдаться биения. Но эти биения дают в результате модуляцию амплитуды колебаний со средней частотой w1, половинкой разности частот 2w2. Теперь вы видите, почему эти два описания эквивалентны.

Итак, мы обнаружили, что нелинейная реакция дает не­сколько эффектов: выпрямление, возникновение гармоник и модуляцию, т. е. возникновение компонент с суммой и разно­стью частот.

Обратите внимание, что все эти эффекты пропорциональны не только коэффициенту нелинейности e, но и произведению амплитуд: либо A2, либо В2, либо АВ. Поэтому мы ожидаем, что они будут более важны для сильных сигналов, чем для слабых.

Описанные нами эффекты находят множество практических приложений. Во-первых, что касается звука, то, как полагают, наше ухо — нелинейный аппарат. Такое представление воз­никло из того факта, что, даже когда звук содержит только чистые тоны, при большой громкости возникает ощущение, что мы слышим высшие гармоники, а также сумму и разность час­тот.

Аппараты, используемые обычно в звуковоспроизводящих устройствах,— усилители, громкоговорители и т. д.— всегда имеют какие-то нелинейности. Они искажают звук, порождая гармоники, которых вначале не было. Эти новые гармоники воспринимаются ухом и, несомненно, нежелательны. Именно по этой причине высокочастотная аппаратура должна быть как можно «более линейной». (Почему нелинейность нашего собст­венного уха не «неприятна» и откуда нам знать, что нелинейность «сидит» в громкоговорителе, а не в нашем ухе,— не ясно!)

Однако в некоторых случаях нелинейность совершенно необходима, и в некоторых частях радиопередающих и прини­мающих устройств она намеренно делается побольше. При ра­диопередачах с помощью амплитудной модуляции сигналы от «голоса» (частоты порядка нескольких килогерц) комбинируются с «несущим сигналом» (с частотой порядка нескольких ме­гагерц) в нелинейной цепи, которая называется модулятором. При этом получаются модулированные колебания, которые за­тем излучаются в эфир. В приемнике сигнал снова попадает в нелинейный контур, который складывает и вычитает частоты модулированного сигнала, выделяя снова звуковой сигнал.

Когда мы разбирали вопрос прохождения света через ве­щество, мы предполагали, что вынужденные колебания зарядов пропорциональны электрическому полю света, т. е. мы брали линейную реакцию. Это действительно очень хорошее прибли­жение. Только в последние несколько лет были построены источ­ники света (лазеры), которые дают интенсивность, достаточную для наблюдения нелинейных эффектов. Теперь можно создавать гармоники световых частот. Если пропускать через кусок стекла сильный красный свет, то выходит он оттуда с неболь­шим добавком второй гармоники — голубого света!

 

– Конец работы –

Эта тема принадлежит разделу:

КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ

На сайте allrefs.net читайте: "КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ"...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Нелинейная реакция

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства вещества
С этой главы мы начнем изучение новой темы, которая займет у нас довольно много времени. Мы начнем анализ свойств вещества с физической точки зрения. Зная, что вещество построено из большого

Давление газа
Каждый знает, что газ оказывает давление. Но отчего? В этом надо разобраться как следует. Если бы наши уши были намного чувствительнее, чем они есть на самом деле, мы бы все время слышали страшный

Сжимаемость излучения
Приведем еще один пример из кинетической теории газов; он не особенно интересует химиков, но очень важен для астро­номов. Внутри нагретого до высокой температуры ящика име­ется огромное число фотон

Температура и кинетическая энергия
До сих пор мы не имели дела с температурой; мы созна­тельно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно гово­рим, что газ при это

Закон идеального газа
Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно про­изведению полного числа атом

Экспоненциальная атмосфера
Мы уже изучали некоторые свойства боль­шого числа сталкивающихся атомов. Наука, которая занимается этим, называется кине­тической теорией, и она описывает свойства вещества, рассматривая, как сталк

Закон Болъцмаиа
Отметим здесь тот факт, что числитель показателя экспонен­ты в равенстве (40.1) — это потенциальная энергия, атома. Поэ­тому можно в нашем случае сформулировать закон следующим образом: плот

Испарение жидкости
В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами

Распределение молекул по скоростям
Обсудим теперь распределение молекул по скоростям, по­тому что интересно, а иногда и полезно знать, какая часть мо­лекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те

Удельные теплоемкости газов
Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже гово­рили, что если U—внутренняя энергия N молекул, то фор­мула pV=NkT=(g-1)

Поражение классической физики
Итак, приходится сказать, что мы натолкнулись на труд­ности. Можно соединить атомы не пружинкой, а чем-нибудь другим, но оказывается, что это только увеличит значение g. Если пустить в ход другие в

Равнораспределение энергии
Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под мик­роскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достато

Тепловое равновесие излучения
Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что у нас имеется заряженный осциллятор, вроде того, о котором мы говорили, когд

Равномерное распределение и квантовый осциллятор
Только что отмеченная трудность — это еще одна сторона проблемы непрерывности в классической физике, она началась с непорядка в теплоемкостях газов, а потом эта проблема сконцентрировалась на распр

Случайные блуждания
Попробуем понять, насколько меняется положение танцу­ющей частицы за время, во много раз большее, чем промежуток между двумя ударами. Посмотрим на маленькую частицу, которая вовлеклась в броуновско

Испарение
Эта глава посвящена дальнейшим приме­нениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или

Термоиониая эмиссия
Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой ради

Тепловая ионизация
Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть,

Химическая кинетика.
При химических реакциях происходит нечто похожее на «ионизаци

Законы излучения Эйнштейна
Обратимся теперь к интересной задаче, похожей на только что о

Столкновения молекул
До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ сл

Средняя длина свободного пробега
Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно оп­ределить, далеко ли успеет уйти частица между столкновениями. Если мы знае

Скорость дрейфа
Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства осталь­ных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отлича

Нонная проводимость
Применим наши результаты к частному случаю. Предпо­ложим, что в сосуде, заполненном газом, содержатся также ионы — атомы или молекулы с избыточным электрическим зарядом. Схематически это выглядит т

Молекулярная диффузия
Перейдем к другой задаче, для которой нам придется не­сколько изменить метод анализа, — к задаче о диффузии. Пред­положим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
Jx=lv(dna/dx) (43.24) Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Теплопроводность
Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху

Тепловые машины; первый закон
До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся

Второй закон
А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерян­ная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при темп

Обратимые машины
Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения.

Коэффициент полезного действия идеальной машины
А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1 и Т2 . Ясно, что W пропорционально Q1, ибо ес

Термодинамическая температура
Пока мы не будем делать попыток выразить эту возрастаю­щую функцию в терминах делений знакомого нам ртутного гра­дусника, а взамен определим новую температурную шкалу. Когда-то «температура»

Энтропия
Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин Q1/T1=Q2/T2, и тепло Q1 при температуре

Внутренняя энергия
Когда приходится использовать термоди­намику для дела, то оказывается, что она очень трудный и сложный предмет. В этой книге, однако, мы не будем залезать в самые дебри. Эта область особенно интере

Применения
Теперь обсудим смысл уравнения (45.7) и посмотрим, почему оно дает ответ на поставленные в предыдущей главе вопросы. Мы занимались рассмотрением такой задачи: в кинетической теории ясно, что рост т

Уравнение Клаузиуса— Клайперона
Испарение жидкости — это еще одна область, в которой можно применить наши результаты. Предположим, что мы вдвигаем поршень в цилиндр с каким-то веществом. Естественно задать себе вопрос: к

Как действует храповик
В этой главе мы поговорим о храповике и собачке — очень простом устройстве, позволяю­щем оси вращаться только в одном направлении. Возможность получать одностороннее вращение заслуживает глубокого

Храповик как машина
Пойдем дальше. Рассмотрим другой пример: температура вертушки T1, а температура храповика Т2; T2 меньше Т1. Так как храповик хол

Обратимость в механике
Что же это за глубокий механический принцип, который утверждает, что при постоянстве температуры и достаточно про­должительной работе наше устройство не уйдет ни назад, ни вперед? Очевидно, мы полу

Необратимость
Все ли законы физики обратимы? Конечно, нет! Попробуйте-ка, например, из яичницы слепить обратно яйцо! Или пустите фильм в обратную сторону — публика в зале тотчас же начнет смеяться. Необратимость

Порядок и энтропия
Итак, мы должны теперь потолковать о том, что понимать под беспорядком и что — под порядком. Дело не в том, что по­рядок приятен, а беспорядок неприятен. Наши смешанные и несмешанные газы отличаютс

Распространение звука
Давайте выведем теперь свойства распространения звука между источником и приемником, основываясь на законах Нью­тона, но не учитывая при этом взаимодействия звука с источ­ником и приемником. Обычно

Волновое уравнение
Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами: I. Газ движется, и плотность его меняется. II. При изменении плотности меняется и давление. I

Решения волнового уравнения
Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмуще­ние, движется с постоянно

Скорость звука
При выводе волнового уравнения для звука мы получили формулу, которая связывает при нормальном давлении скорость движения волны и относительное изменение давления с плотностью: с2

Сложение двух волн
Не так давно мы довольно подробно обсуж­дали свойства световых волн и их интерферен­цию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом пред­полагалось, что частоты источн

Некоторые замечания о биениях и модуляции
Предположим теперь, что нас интересует интенсивность волны, описываемой уравнением (48.7). Чтобы найти ее, нужно взять квадрат абсолютной величины либо правой, либо левой части этого уравнения. Дав

Боковые полосы
Описанную выше модулированную волну математически можно записать в виде S=(1+bcoswmt)coswct, (48.9) где (wс— несущая частота, а w

Локализованный волновой пакет
Следующий вопрос, который мы хотим обсудить,— это ин­терференция волн как в пространстве, так и во времени. Пред­положим, что в пространстве распространяются две волны. Вы, конечно, знаете, что рас

Амплитуда вероятности частиц
Рассмотрим еще один необычайно интересный пример фа­зовой ско

Волны в пространстве трех измерений
Мы заканчиваем наше обсуждение волн несколькими об­щими замечаниями о волновом уравнении. Эти замечания, при­званные дать нам картину того, чем нам предстоит заниматься в будущем, вовсе не претенду

Собственные колебания
Вернемся теперь к другим очень любопытным примерам биений, которые немного отличаются от того, что мы рассмат­ривали до сих пор. Представьте себе два одинаковых маятника, которые связаны между собо

Отражение волн
В этой главе мы рассмотрим ряд замеча­тельных явлений, возникающих в результате «заключения» волны в некоторую ограничен­ную область. Сначала нам придется устано­вить несколько частных фактов, отно

Волны в ограниченном пространстве и собственные частоты
Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегос

Двумерные собственные колебания
Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волн

Связанные маятники
Напоследок необходимо подчеркнуть, что гармоники возни­кают не только в сложных непрерывных системах, но и в очень простых механических системах. Хорошим примером этого служит рассмотренная в преды

Линейные системы
Давайте теперь подытожим рассмотренные выше идеи, которые все являются аспектами, по-видимому, наиболее об­щего и удивительного принципа математической физики. Если у нас есть линейная система, хар

Музыкальные звуки
Говорят, что Пифагор первый обнаружил тот интересный факт, что одновременное зву­чание двух одинаковых струн различной длины приятнее для слуха, если длины этих струн относятся друг к другу

Ряд Фурье
В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне воз­никают различные собственные гармоники и что любое частное колебание, которое только

Качество и гармония
Теперь мы уже можем описать, чем определяется «качество» музыкального тона. Оно определяется относительным количе­ством различных гармоник, т. е. относительными величинами а и b. Тон,

Коэффициенты Фурье
Вернемся теперь к утверждению о том, что каждую ноту, т. е. любое периодическое колебание, можно представить в виде надлежащей комбинации гармоник. Хотелось бы знать, как можно найти нужную

Теорема об энергии
Энергия волны пропорциональна квадрату ее амплитуды.

Волна от движущегося предмета
Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны.

Ударные волны
Зачастую скорость волны зависит от ее амплитуды, и в слу­чае звука эта зависимость возникает следующим образом. Движущийся в воздухе предмет должен сдвигать его со своего пути, вызывая при этом воз

Волны в твердом теле
Следующий тип волн, о которых нам следует поговорить,— это волны в твердом теле. Мы уже рассмотрели звуковые волны в жидкости и газе, а между ними и звуковыми волнами в твер­дом теле имеется непоср

Поверхностные волны
Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,— это волны на поверхности воды. Вы скоро убедитесь, что более неудачног

Симметрия и законы сохранения
Даже на этом уровне симметрии физических законов очень увлекательны, но оказывается, что они куда более интересны и удивительны при переходе к квантовой механике. Факт, причи­ну которого я не могу

Зеркальное отражение
Перейдем к следующему вопросу, который будет занимать нас до конца главы,— это симметрия при отражении в про­странстве. Проблема заключается в следующем: симметричны ли физические законы при

Полярный и аксиальный векторы
Пойдем дальше. Вы видели, что в физике имеется масса при­меров применимости правила правой и левой руки. В самом деле, когда мы изучали векторный анализ, то узнали о правиле пра­вой руки, которым н

Какая же рука правая?
Дело в том, что существует один интересный факт: в любом явлении правило правой руки всегда встречается два или вооб­ще четное число раз, и в результате любое явление всегда выглядит симметричным.

Четность не сохраняется!
Оказывается, что законы тяготения, законы электричества и маг

Антивещество
Когда исчезает одна из симметрии, то первым делом нуж­но немедленно обратиться к списку известных или предположен­ных симметрии и посмотреть, не может ли еще нарушиться ка­кая-то из них. Мы не упом

Нарушенная симметрия
А что нам делать с законами, которые только приблизительно симметричны? Самое удивительное здесь то, что в широкой об­ласти важнейших явлений—ядерные силы, электромагнитные явления и даже не

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги