рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Зеркальное отражение

Зеркальное отражение - раздел Физика, КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ Перейдем К Следующему Вопросу, Который Будет Занимать Нас До Конца Главы,— Эт...

Перейдем к следующему вопросу, который будет занимать нас до конца главы,— это симметрия при отражении в про­странстве. Проблема заключается в следующем: симметричны ли физические законы при отражении? Можно ее сформулировать и по-другому. Предположим, что мы построили некое устрой­ство, например часы с множеством колесиков, стрелок и пр. Они идут, внутри у них есть устройство для заводки. Посмот­рим теперь на часы в зеркало. Дело не в том, как они выглядят в зеркале. Нет, давайте построим другие часы, в точности такие же, как те первые, отраженные в зеркале. Там, где у первых часов находится винт с правой резьбой, мы поставим винт с левой резьбой, там, где на циферблате стоит цифра «XII», мы на циферблате вторых часов нарисуем «IIX», каждая спиральная пружина закручена в одну сторону у первых часов и в проти­воположную у зеркально отраженных. Когда все будет за­кончено, получатся двое часов, каждые из которых будут точ­ным зеркальным отражением других, хотя заметьте, что и те и другие настоящие физические материальные объекты. Возникает вопрос: а что, если и те и другие часы запущены при одинаковых условиях, если пружины их закручены одинаково туго, будут ли они идти и тикать, как точное зеркальное от­ражение? (Это чисто физический, а вовсе не философский во­прос.) Наша интуиция и наше знание физических законов под­сказывают, что будут.

Мы подозреваем, что по крайней мере в этом случае отраже­ние будет одной из симметрии физических законов, т. е. если заменить «право» на «лево», а все остальное оставить тем же самым, то никакой разницы при этом мы обнаружить не смо­жем. Предположим на минуту, что все это верно. Тогда ника­кими физическими явлениями невозможно различить, где «право», а где «лево», точно так же, как, скажем, никаким фи­зическим опытом невозможно найти абсолютной скорости дви­жения. Таким образом, с помощью каких-то опытов невоз­можно абсолютно определить, что мы понимаем под «правым», как противоположностью «левого», поскольку все физические законы должны быть симметричны.

Разумеется, мир наш не должен быть симметричным. Если, например, взять то, что мы называем «географией», то здесь вполне можно определить, где правая сторона. Пусть мы на­ходимся в Нью-Орлеане и смотрим в сторону Чикаго. Тогда Флорида будет от нас справа (конечно, если мы стоим ногами на Земле!). Так что в географии можно определить, где «право» и где «лево». В любой системе реальное положение не должно иметь ту симметрию, о которой идет речь, вопрос в том — сим­метричны ли законы? Другими словами, противоречит ли фи­зическим законам наличие подобного Земле шара с «левосто­ронней поверхностью» и человеком, подобным нам, смотрящим в сторону города, подобного Чикаго, с места, подобного Нью-Орлеану, но со всем остальным, перевернутым наоборот, так что Флорида у него будет уже с другой стороны? Ясно, что та­кая ситуация не кажется невозможной, физическим законам не противоречит такая замена всего левого на правое.

Еще одно обстоятельство: наше определение «правой» сто­роны не должно зависеть от истории. Иначе было бы очень просто отличить «левое» от «правого» — пойти в магазин зап­частей и наугад взять какой-нибудь болт. Вообще говоря, у нас в руках не обязательно окажется «правый болт», но все же более вероятно, что он будет именно правым, а не левым. Но это вопрос истории, или условностей, или общего положения вещей, а не фундаментальных законов. Ведь кто-то может начать выпускать болты с левой резьбой.

Таким образом, нам нужно поискать какие-то другие явле­ния, где бы «правое» входило более фундаментальным образом. Рассмотрим следующую возможность. Известно, что поляри­зованный свет, пропущенный через сахарный раствор, повора­чивает свою плоскость поляризации. Как мы видели в гл. 33 (вып. 3), плоскость поляризации при определенной концентра­ции сахара поворачивается направо. Казалось бы, мы нашли способ определения «правой стороны», потому что, растворив в воде некоторое количество сахара, мы можем повернуть пло­скость поляризации вправо. Но сахар получается из живых организмов, а если мы сделаем его искусственно, то обнаружим, что он не поворачивает плоскости поляризации. Если в этот искусственный сахар, который не поворачивает плоскости по­ляризации, напустить бактерий (они съедают некоторое коли­чество сахара) и затем отфильтровать их, то обнаружится, что, хотя сахар остался (почти половина первоначального ко­личества), и он поворачивает плоскость поляризации, но теперь уже в другую сторону! Этот факт кажется очень обескураживаю­щим, однако его можно легко объяснить.


Приведем другой пример. Одно из веществ, общее для всех живых существ, основа жизни — это белки (протеин). Белок состоит из цепочек аминокислот. На фиг. 52.1 показана модель аминокислоты, выделенной из белка.

Фиг. 52.1. Модели моле­кул аланина.

Слева — L-аланин; справа — D-аланин.

 

Эта кислота названа аланином, и на фиг. 52.1 (слева) показано расположение атомов в молекуле аланина, выделенного из белка живых существ. Если же мы попытаемся создать аланин из двуокиси углерода, этана и аммиака (что в самом деле можно сделать — это не столь уже сложная молекула), то обнаружим, что получились не толь­ко такие молекулы, но и другие, подобные показанной на фиг. 52.1 (справа), причем в равных количествах! Первые молеку­лы, те, которые произошли от живых существ, называются L-ала-нином. Другие же, одинаковые с ним химически в том смысле, что состоят из тех же атомов с теми же связями между ними, образуют «правосторонние» молекулы, которые в отличие от «левосторонних» молекул L-аланина называются D-аланином. Интересно, что если мы будем приготовлять аланин в лабора­тории из простых газов, то получится смесь обоих сортов в рав­ных количествах. Жизнь, однако, использует только L-аланин. (Но не без исключения, конечно: то там, то здесь в живых су­ществах встречается и .D-аланин, однако эти случаи очень редки. Во все белки входит исключительно L-аланин.) Если мы приготовим оба сорта и будем этой смесью кормить животных, которые любят «есть» его (т. е. усваивают аланин), то окажется, что они не смогут использовать D-аланин, а «съедят» только L-аланин. В результате получится то же, что и с нашим саха­ром; после того как бактерии «съедят» тот сахар, который им нравится, остается только «ненастоящий» сорт! (Левосторонний сахар тоже сладкий, а все же не такой, как настоящий, право­сторонний!)

Итак, похоже, что явления жизни позволяют отличить «правую» сторону от «левой», поскольку две молекулы хими­чески отличны одна от другой. И все-таки — нет, не могут! Пока мы занимались физическими измерениями, подобными определению энергий или скоростей химических реакций и т. д., эти два сорта вели себя совершенно одинаковым образом, если, разумеется, все остальное тоже было зеркально отражено. Одни молекулы поворачивают свет направо, а другие, проходя то же количество раствора,— налево на точно ту же величину. Таким образом, с точки зрения физики можно использовать лю­бую из этих двух аминокислот. Насколько мы понимаем основу вещей сегодня, уже в уравнение Шредингера заложено, что две молекулы должны вести себя в точности одинаковым образом, хотя там, где у одной правая сторона, у другой — левая. Но в природе тем не менее все устроено только одним способом!

Как полагают, причина этого состоит в следующем. Пред­ставьте себе, например, что в один прекрасный момент возникли такие условия, что все белки у каких-то существ содержали только левосторонние аминокислоты. Это привело к тому, что все на свете «перекосилось», «перекосились» все вещества в живых клетках, «перекосились» все ферменты— все стало не­симметричным. Когда пищеварительные ферменты пытались сменять химию своей пищи с одного сорта на другой, то один сорт пищи «подходил» им, а другой — нет (совсем как золушкин башмачок, с тем исключением, что мы меряем его на «левую но­гу»). Насколько нам известно сейчас, в принципе возможно создать такую лягушку, у которой, например, каждая молекула окажется «перевернутой», т. е. создать точное зеркальное отра­жение настоящей лягушки, так сказать, «левостороннюю» ля­гушку. Некоторое время эта «левосторонняя лягушка» чувство­вала бы себя вполне нормально, но не смогла бы найти себе пищи: если бы она проглотила муху, то ее ферменты не способны были бы переварить ее. Ведь муха-то настоящая, с правосторон­ней аминокислотой (разумеется, если мы не разведем специаль­но для нашей лягушки «левосторонних мух»). Итак, насколько нам сегодня известно, химические и жизненные процессы, если бы мы все «перевернули», протекали бы точно так же, как и сейчас.

Если жизнь — полностью физико-химическое явление, то факт «закрученности» всех белков только в одном направлении можно понять лишь с той точки зрения, что с самого начала со­вершенно случайно победил какой-то один сорт молекул. Где-то однажды органическая молекула как-то «перекосилась», и пра­вая сторона оказалась выделенной; какой-то случай в истории создал одностороннюю ситуацию, и с тех пор «перекос» разра­стался все шире и шире. Но, возникнув однажды, ситуация, которую мы наблюдаем сейчас, будет продолжаться вечно: все ферменты переваривают и приготовляют только «правосто­ронние» вещества. Когда в листья растений входит углекислый газ, водяной пар и другие вещества, то ферменты, приготовляю­щие из них сахар, делают его правосторонним, ибо они сами правосторонние. Если бы в более позднее время возник какой-то новый сорт вирусов или каких-то других живых существ, то они смогли бы выжить только, если оказались бы способны питаться уже существующими органическими веществами. А, стало быть, и сами они должны быть того же сорта.

Для правосторонних молекул не существует закона сохра­нения их числа. Жизнь может только увеличивать его. Пред­положение, таким образом, состоит в том, что жизненные явле­ния говорят нам не об отсутствии симметрии физических за­конов, а, наоборот, об универсальности природы и общности начала всех живых созданий на Земле в описанном выше смысле.

– Конец работы –

Эта тема принадлежит разделу:

КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ

На сайте allrefs.net читайте: "КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ"...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Зеркальное отражение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства вещества
С этой главы мы начнем изучение новой темы, которая займет у нас довольно много времени. Мы начнем анализ свойств вещества с физической точки зрения. Зная, что вещество построено из большого

Давление газа
Каждый знает, что газ оказывает давление. Но отчего? В этом надо разобраться как следует. Если бы наши уши были намного чувствительнее, чем они есть на самом деле, мы бы все время слышали страшный

Сжимаемость излучения
Приведем еще один пример из кинетической теории газов; он не особенно интересует химиков, но очень важен для астро­номов. Внутри нагретого до высокой температуры ящика име­ется огромное число фотон

Температура и кинетическая энергия
До сих пор мы не имели дела с температурой; мы созна­тельно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно гово­рим, что газ при это

Закон идеального газа
Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно про­изведению полного числа атом

Экспоненциальная атмосфера
Мы уже изучали некоторые свойства боль­шого числа сталкивающихся атомов. Наука, которая занимается этим, называется кине­тической теорией, и она описывает свойства вещества, рассматривая, как сталк

Закон Болъцмаиа
Отметим здесь тот факт, что числитель показателя экспонен­ты в равенстве (40.1) — это потенциальная энергия, атома. Поэ­тому можно в нашем случае сформулировать закон следующим образом: плот

Испарение жидкости
В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами

Распределение молекул по скоростям
Обсудим теперь распределение молекул по скоростям, по­тому что интересно, а иногда и полезно знать, какая часть мо­лекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те

Удельные теплоемкости газов
Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже гово­рили, что если U—внутренняя энергия N молекул, то фор­мула pV=NkT=(g-1)

Поражение классической физики
Итак, приходится сказать, что мы натолкнулись на труд­ности. Можно соединить атомы не пружинкой, а чем-нибудь другим, но оказывается, что это только увеличит значение g. Если пустить в ход другие в

Равнораспределение энергии
Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под мик­роскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достато

Тепловое равновесие излучения
Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что у нас имеется заряженный осциллятор, вроде того, о котором мы говорили, когд

Равномерное распределение и квантовый осциллятор
Только что отмеченная трудность — это еще одна сторона проблемы непрерывности в классической физике, она началась с непорядка в теплоемкостях газов, а потом эта проблема сконцентрировалась на распр

Случайные блуждания
Попробуем понять, насколько меняется положение танцу­ющей частицы за время, во много раз большее, чем промежуток между двумя ударами. Посмотрим на маленькую частицу, которая вовлеклась в броуновско

Испарение
Эта глава посвящена дальнейшим приме­нениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или

Термоиониая эмиссия
Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой ради

Тепловая ионизация
Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть,

Химическая кинетика.
При химических реакциях происходит нечто похожее на «ионизаци

Законы излучения Эйнштейна
Обратимся теперь к интересной задаче, похожей на только что о

Столкновения молекул
До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ сл

Средняя длина свободного пробега
Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно оп­ределить, далеко ли успеет уйти частица между столкновениями. Если мы знае

Скорость дрейфа
Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства осталь­ных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отлича

Нонная проводимость
Применим наши результаты к частному случаю. Предпо­ложим, что в сосуде, заполненном газом, содержатся также ионы — атомы или молекулы с избыточным электрическим зарядом. Схематически это выглядит т

Молекулярная диффузия
Перейдем к другой задаче, для которой нам придется не­сколько изменить метод анализа, — к задаче о диффузии. Пред­положим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
Jx=lv(dna/dx) (43.24) Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Теплопроводность
Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху

Тепловые машины; первый закон
До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся

Второй закон
А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерян­ная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при темп

Обратимые машины
Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения.

Коэффициент полезного действия идеальной машины
А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1 и Т2 . Ясно, что W пропорционально Q1, ибо ес

Термодинамическая температура
Пока мы не будем делать попыток выразить эту возрастаю­щую функцию в терминах делений знакомого нам ртутного гра­дусника, а взамен определим новую температурную шкалу. Когда-то «температура»

Энтропия
Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин Q1/T1=Q2/T2, и тепло Q1 при температуре

Внутренняя энергия
Когда приходится использовать термоди­намику для дела, то оказывается, что она очень трудный и сложный предмет. В этой книге, однако, мы не будем залезать в самые дебри. Эта область особенно интере

Применения
Теперь обсудим смысл уравнения (45.7) и посмотрим, почему оно дает ответ на поставленные в предыдущей главе вопросы. Мы занимались рассмотрением такой задачи: в кинетической теории ясно, что рост т

Уравнение Клаузиуса— Клайперона
Испарение жидкости — это еще одна область, в которой можно применить наши результаты. Предположим, что мы вдвигаем поршень в цилиндр с каким-то веществом. Естественно задать себе вопрос: к

Как действует храповик
В этой главе мы поговорим о храповике и собачке — очень простом устройстве, позволяю­щем оси вращаться только в одном направлении. Возможность получать одностороннее вращение заслуживает глубокого

Храповик как машина
Пойдем дальше. Рассмотрим другой пример: температура вертушки T1, а температура храповика Т2; T2 меньше Т1. Так как храповик хол

Обратимость в механике
Что же это за глубокий механический принцип, который утверждает, что при постоянстве температуры и достаточно про­должительной работе наше устройство не уйдет ни назад, ни вперед? Очевидно, мы полу

Необратимость
Все ли законы физики обратимы? Конечно, нет! Попробуйте-ка, например, из яичницы слепить обратно яйцо! Или пустите фильм в обратную сторону — публика в зале тотчас же начнет смеяться. Необратимость

Порядок и энтропия
Итак, мы должны теперь потолковать о том, что понимать под беспорядком и что — под порядком. Дело не в том, что по­рядок приятен, а беспорядок неприятен. Наши смешанные и несмешанные газы отличаютс

Распространение звука
Давайте выведем теперь свойства распространения звука между источником и приемником, основываясь на законах Нью­тона, но не учитывая при этом взаимодействия звука с источ­ником и приемником. Обычно

Волновое уравнение
Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами: I. Газ движется, и плотность его меняется. II. При изменении плотности меняется и давление. I

Решения волнового уравнения
Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмуще­ние, движется с постоянно

Скорость звука
При выводе волнового уравнения для звука мы получили формулу, которая связывает при нормальном давлении скорость движения волны и относительное изменение давления с плотностью: с2

Сложение двух волн
Не так давно мы довольно подробно обсуж­дали свойства световых волн и их интерферен­цию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом пред­полагалось, что частоты источн

Некоторые замечания о биениях и модуляции
Предположим теперь, что нас интересует интенсивность волны, описываемой уравнением (48.7). Чтобы найти ее, нужно взять квадрат абсолютной величины либо правой, либо левой части этого уравнения. Дав

Боковые полосы
Описанную выше модулированную волну математически можно записать в виде S=(1+bcoswmt)coswct, (48.9) где (wс— несущая частота, а w

Локализованный волновой пакет
Следующий вопрос, который мы хотим обсудить,— это ин­терференция волн как в пространстве, так и во времени. Пред­положим, что в пространстве распространяются две волны. Вы, конечно, знаете, что рас

Амплитуда вероятности частиц
Рассмотрим еще один необычайно интересный пример фа­зовой ско

Волны в пространстве трех измерений
Мы заканчиваем наше обсуждение волн несколькими об­щими замечаниями о волновом уравнении. Эти замечания, при­званные дать нам картину того, чем нам предстоит заниматься в будущем, вовсе не претенду

Собственные колебания
Вернемся теперь к другим очень любопытным примерам биений, которые немного отличаются от того, что мы рассмат­ривали до сих пор. Представьте себе два одинаковых маятника, которые связаны между собо

Отражение волн
В этой главе мы рассмотрим ряд замеча­тельных явлений, возникающих в результате «заключения» волны в некоторую ограничен­ную область. Сначала нам придется устано­вить несколько частных фактов, отно

Волны в ограниченном пространстве и собственные частоты
Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегос

Двумерные собственные колебания
Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волн

Связанные маятники
Напоследок необходимо подчеркнуть, что гармоники возни­кают не только в сложных непрерывных системах, но и в очень простых механических системах. Хорошим примером этого служит рассмотренная в преды

Линейные системы
Давайте теперь подытожим рассмотренные выше идеи, которые все являются аспектами, по-видимому, наиболее об­щего и удивительного принципа математической физики. Если у нас есть линейная система, хар

Музыкальные звуки
Говорят, что Пифагор первый обнаружил тот интересный факт, что одновременное зву­чание двух одинаковых струн различной длины приятнее для слуха, если длины этих струн относятся друг к другу

Ряд Фурье
В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне воз­никают различные собственные гармоники и что любое частное колебание, которое только

Качество и гармония
Теперь мы уже можем описать, чем определяется «качество» музыкального тона. Оно определяется относительным количе­ством различных гармоник, т. е. относительными величинами а и b. Тон,

Коэффициенты Фурье
Вернемся теперь к утверждению о том, что каждую ноту, т. е. любое периодическое колебание, можно представить в виде надлежащей комбинации гармоник. Хотелось бы знать, как можно найти нужную

Теорема об энергии
Энергия волны пропорциональна квадрату ее амплитуды.

Нелинейная реакция
Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важ­ность, но это уже относится к области нелинейных эффектов. Во всех рассмотренны

Волна от движущегося предмета
Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны.

Ударные волны
Зачастую скорость волны зависит от ее амплитуды, и в слу­чае звука эта зависимость возникает следующим образом. Движущийся в воздухе предмет должен сдвигать его со своего пути, вызывая при этом воз

Волны в твердом теле
Следующий тип волн, о которых нам следует поговорить,— это волны в твердом теле. Мы уже рассмотрели звуковые волны в жидкости и газе, а между ними и звуковыми волнами в твер­дом теле имеется непоср

Поверхностные волны
Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,— это волны на поверхности воды. Вы скоро убедитесь, что более неудачног

Симметрия и законы сохранения
Даже на этом уровне симметрии физических законов очень увлекательны, но оказывается, что они куда более интересны и удивительны при переходе к квантовой механике. Факт, причи­ну которого я не могу

Полярный и аксиальный векторы
Пойдем дальше. Вы видели, что в физике имеется масса при­меров применимости правила правой и левой руки. В самом деле, когда мы изучали векторный анализ, то узнали о правиле пра­вой руки, которым н

Какая же рука правая?
Дело в том, что существует один интересный факт: в любом явлении правило правой руки всегда встречается два или вооб­ще четное число раз, и в результате любое явление всегда выглядит симметричным.

Четность не сохраняется!
Оказывается, что законы тяготения, законы электричества и маг

Антивещество
Когда исчезает одна из симметрии, то первым делом нуж­но немедленно обратиться к списку известных или предположен­ных симметрии и посмотреть, не может ли еще нарушиться ка­кая-то из них. Мы не упом

Нарушенная симметрия
А что нам делать с законами, которые только приблизительно симметричны? Самое удивительное здесь то, что в широкой об­ласти важнейших явлений—ядерные силы, электромагнитные явления и даже не

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги