рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Движение тел переменной массы. Реактивное движение

Движение тел переменной массы. Реактивное движение - раздел Механика, Курс общей физики (лекции) Раздел I Физические основы механики До Сих Пор Мы Считали, Что Масса Тел В Процессе Их Движения Не Меняется. Но Т...

До сих пор мы считали, что масса тел в процессе их движения не меняется. Но так обстоит дело не всегда.

Рассмотрим, например, движение ракеты — классический пример тела, масса которого уменьшается по мере расхода топлива (рис. 4.4).

Рис. 4.4

Пусть в момент времени t масса ракеты m, а её скорость . Спустя dt секунд скорость ракеты увеличится на , а масса уменьшится на величину dm и станет (mdm).

dm — масса сгоревшего топлива, которое покинуло ракету со скоростьюотносительно неё. Изменение импульса системы за время dt можно представить в следующем виде:

.

Слагаемым dm∙dV пренебрежем как малой величиной высшего порядка по сравнению с остальными слагаемыми. Значит

.

Это изменение импульса системы равняется импульсу действующей внешней силы

Полученный результат перепишем в форме уравнения движения

(4.14)

Здесь: слева — произведение массы ракеты на её ускорение,

справа — действующие силы: — внешняя сила,

— реактивная сила.

Реактивная сила возникает потому, что вылетающим продуктам сгорания сообщается относительная скорость . Вначале топливо было в покое относительно ракеты. Затем оно двигалось ускоренно и достигло скорости . Это ускорение обусловлено силой взаимодействия продуктов сгорания с ракетой. Но по третьему закону Ньютона сила действует не только на продукты сгорания, но и на ракету. Это и есть реактивная сила, пропорциональная относительной скорости и секундному расходу топлива .

Уравнение (4.14) называется уравнением движением тела переменной массы. Оно было впервые получено И.В. Мещереным и носит его имя:

(4.15)

где: — реактивная сила.

Теперь посмотрим, как будет двигаться ракета, на которую не действуют никакие внешние силы (= 0). Движение ракеты будем считать прямолинейным и спроецируем уравнение (4.15) на направление её движения:

;

отсюда:

;

или

. (4.16)

Постоянную интегрирования с найдём из начального условия. Будем считать, что в начальный момент полета — в момент старта — скорость ракеты V(0) = 0, а её масса равна стартовому значению m0.

Перепишем (4.16) для этих начальных условий:

V(0) = 0 = —U∙ln∙m0 + c,

то есть

c = U∙ln∙m0

Используя этот результат в уравнении (4.16) получим

. (4.17)

Это соотношение называется формулой Циолковского.

Используя эту формулу, оценим, например, какой должна быть стартовая масса ракеты m0, чтобы вывести на околоземную орбиту груз массой m = 103 кг.

Первая космическая скорость составляет V = 8 км/с, а относительная скорость истечения продуктов сгорания U — порядка 2 км/с.

Тогда

и

кг.

Если скорость истечения U принять равной 1 км/с, то есть вдвое меньше, то стартовая масса ракеты возрастёт до значения кг.

То есть 3 тысячи тонн!

Таково влияние качества ракетного топлива на стартовую массу ракеты.

Лекция 5 «Динамика материальной точки»

План лекции

1. Движение в неинерциальных системах отсчёта. Силы инерции.

1.1. Силы инерции, возникающие при ускоренном поступательном движении системы отсчёта.

1.2. Сила инерции, действующая на тело, неподвижное во вращающейся системе отсчёта.

1.3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчёта.

1. Движение в неинерциальных системах отсчёта

Законы Ньютона — основа классической механики — справедливы лишь в инерциальных системах отсчета.

Опытным путем можно установить инерциальность или неинерциальность той или иной конкретной системы.

Но если инерциальность одной системы отсчёта установлена, то, воспользовавшись принципом относительности Галилея, можно создать сколько угодно инерциальных систем. Ведь любая система, движущаяся относительно инерциальной прямолинейно, поступательно и равномерно, тоже является инерциальной.

Отсюда легко сделать вывод, что ускоренно движущаяся или вращающаяся система отсчёта — неинерциальная.

Как в такой — неинерциальной — системе описать движение тела?

В качестве уравнения движения в неинерциальной системе отсчёта вновь используется уравнение второго закона Ньютона. Но наряду с привычными, знакомыми нам силами, здесь приходиться привлекать совсем новые, необычные силы, которые получили название «силы инерции».

Познакомимся с этими силами, рассматривая движение тела в разных неинерциальных системах отсчёта.

1.1. Силы инерции, возникающие при ускоренном поступательном движении системы отсчёта

Это классическая задача о поведении маятника, прикреплённого к потолку железнодорожного вагона (рис. 5.1). Вагон движется ускоренно. Его ускорение

Рис. 5.1

Маятник, конечно, примет положение, изображённое на рисунке.

При этом на отклонившейся грузик маятника действуют две силы: гравитационная (сила тяжести) и упругая (сила натяжения нити) . Равнодействующая этих двух сил и определит ускорение маятника . Ведь маятник движется вместе с вагоном с ускорением :

R = mg × tga = ma0

Это и есть уравнение движения грузика m, записанное в неподвижной системе отсчёта S, связанной с Землёй.

Теперь рассмотрим это же движение, перейдя в движущийся вагон.

В системе отсчета S’, связанной с вагоном, мы обнаружим необычную картину: маятник отклонился на угол a и застыл неподвижно, хотя на него действует сила

R = mg × tga = ma0!

Налицо нарушение всех законов механики: на тело действует сила, а оно остаётся при этом в покое. Создается впечатление, что на шарик действует ещё одна сила , равная , но противоположного направления (рис. 5.2).

Рис. 5.2

Приложим эту силу, и всё становиться на свои места: равнодействующая сил, действующих на тело, равна теперь нулю и тело остаётся в покое. Его скорость V’ и, главное, ускорение a’ относительно вагона (в системе S’) равны нулю.

.

— сила инерции, возникшая в результате ускоренного движения системы отсчёта

. (5.1)

Она равна произведению массы тела на ускорение системы отсчёта . Но направлена сила инерции в сторону, противоположную .

Иногда эту силу называют фиктивной силой инерции, имея в виду её особые свойства. Представим, что при резком торможении вагона, чемодан падает с полки, то есть начинает двигаться ускоренно относительно вагона. Но при этом вы не сможете указать предмет, который подействовал на чемодан и заставил его двигаться с ускорением. У фиктивной силы инерции — силы действия — нет силы противодействия.

1.2. Сила инерции, действующая на тело, неподвижное во вращающейся системе отсчёта

Перенесём наш маятник на диск, вращающийся с угловой скоростью w вокруг вертикальной оси (рис. 5.3).

 

Рис. 5.3

Маятник отклонится от вертикали, двигаясь по окружности радиуса r.

Движение происходит под действием сил тяжести и натяжения нити . Их равнодействующая , направленная по радиусу к центру окружности, обеспечивает центростремительное ускорение .

Легко записать уравнение движения грузика m в неподвижной, инерциальной системе отсчёта S

R = mg ×tga = mw2r. (5.2)

Теперь перейдём на вращающийся диск и посмотрим на движение маятника в системе отсчёта, вращающейся вместе с диском S’ (рис. 5.4). Мы вновь увидим необычайную картину:

Рис. 5.4

в этой системе отсчёта маятник неподвижен. Но на него, несомненно, действует сила , представляющая собой равнодействующую двух сил и . Во вращающейся, неинерциальной системе отсчёта тело, вопреки второму закону Ньютона, остаётся в покое, несмотря на действие вполне реальной силы . Можно воспользоваться уравнением движения Ньютона и в этом случае, если добавить к системе реально действующих сил ещё одну — силу инерции (рис. 5.4). Теперь равнодействующая всех сил, действующих на тело (вместе с силой инерции) равна нулю. Поэтому тело остаётся в покое и его ускорение тоже равно нулю.

.

Или

. (5.3)

Во вращающейся системе отсчёта грузик маятника оказался в покое в результате действия трёх сил: силы тяжести , упругой силы натяжения нити и силы инерции .

Сила инерции в данном случае называется центробежной.

Центробежная сила равна центростремительной, но направлена по радиусу не к центру вращения, а в противоположную сторону — от центра.

(5.4)

Отметим, что центробежная сила инерции, действующая на тело, неподвижное во вращающейся системе отсчёта, зависит от положения этого тела. С увеличением расстояния до оси z, растёт и центробежная сила инерции Fцб. Это особенно хорошо видно, если разместить на вращающемся диске несколько маятников на разных расстояниях от оси вращения (рис. 5.5)

Z

Рис. 5.5

1.3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчёта.

Рассмотрим самый простой случай: шарик массой т равномерно движется со скоростью v0 вдоль радиуса вращающегося диска. Чтобы обеспечить такое движение снабдим шарик направляющим стержнем, по которому он мог бы перемещаться без трения. Нитка, прикрепленная к шарику, позволит ему в радиальном направлении двигаться с постоянной скоростью v0 (рис. 5.6).

 


Рис. 5.6

Диск вращается с угловой скоростью w. Опишем движение шарика в неподвижной инерциальной системе отсчёта S(x, y). В этой системе движение шарика складывается из двух движений: равномерного прямолинейного — по радиусу диска со скоростью v0 и кругового движения с угловой скоростью w.

В результате сложения этих двух движений, шарик будет двигаться по криволинейной траектории — разворачивающейся спирали.

В произвольный момент времени t шарик на расстоянии r от оси вращения будет иметь радиальную скорость v0 и касательную — тангенциальную скорость, связанную с вращением диска (wr) (рис. 5.7).

Рис. 5.7

Посмотрим, как изменятся эти скорости шарика спустя малое время dt.

Во-первых, вся картина скоростей повернётся на угол da = wdt (рис. 5.7 б). Во вторых, радиальная скорость (оставаясь неизменной по величине — V0) получит приращение:

dV1 = V0da = V0wdt, (5.5)

связанное с повтором вектора скорости V0 на угол da = wdt.

Изменится и тангенциальная скорость. Её изменение по величине определяется тем, что шарик удалится от оси вращения на расстояние dr = V0dt. Поэтому:

dV2 = w(r + dr) – wr = wdr = wV0dt. (5.6)

Кроме того, эта скорость изменится на величину:

dV3 = wrda = wrwdt = w2rdt, (5.7)

в связи с поворотом вектора этой скорости на угол da.

Проанализировав все эти изменения, придём к выводу, что в радиальном направлении изменение скорости составит величину:

dVr = dV3 = w2rdt,

а в тангенциальном:

dVt = dV1 + dV2 = 2wV0dt.

Разделив эти изменения на промежуток времени dt, получим соответствующие компоненты ускорения:

; (5.8)

. (5.9)

Несложно ответить на вопрос: какие силы обеспечивают эти ускорения?

Центростремительное ускорение создаётся упругой силой натяжения нити (Fц.с. = Fупр. = maц.с. = mw2r), направленной по радиусу к оси вращения. Касательное ускорение at поддерживается упругой силой деформированного стержня (= mat = m2wV0). Стержень при движении прогибается и действует на шарик с силой, направленной в сторону вращения (рис. 5.8).

 

 

 

Рис. 5.8

Запишем уравнения движения шарика в инерциальной системе отсчёта. Это уравнения второго закона Ньютона для двух движений — вдоль радиуса:

, (5.10)

и в перпендикулярном направлении:

. (5.11)

Теперь посмотрим, как представляется движение этого же шарика наблюдателю, вращающемуся вместе с диском.

Этот наблюдатель видит, что шарик в его вращающейся системе отсчёта движется равномерно и прямолинейно со скоростью = сonst вдоль радиуса диска. Ускорение шарика равно нулю, но при этом на него действует упругая сила натяжения нити Fц.с. = mw2r и упругая сила деформированного стержня F = m2wV0. Их равнодействующая никак не может быть равна нулю.

Для того, чтобы записать уравнение движения этого тела в неинерциальной системе отсчёта в виде уравнений второго закона Ньютона, к реально действующим упругим силам прибавим две силы инерции (рис. 5.9):

(5.12)

и

. (5.13)

 

 

Рис. 5.9

Теперь и в радиальном и в тангенциальном направлениях суммы сил будут равны нулю, что и объясняет равномерное движение шарика вдоль радиуса.

С первой из сил инерции мы знакомы. Это центробежная сила инерции.

Вторая сила инерции называется силой Кориолиса.

Эти силы можно записать в векторном виде:

и

.

Подводя итог рассмотрению движений в неинерциальных системах отсчёта, отметим следующие основные моменты.

Ньютоновским уравнением движения можно воспользоваться и в неинерциальных системах отсчёта. Но при этом систему реально действующих сил нужно дополнить силами инерции.

В неинерциальной системе отсчёта, движущейся прямолинейно и поступательно с ускорением , сила инерции равна:

. (5.14)

В неинерциальной системе отсчёта, вращающейся с угловой скоростью w, в общем случае следует ввести две силы инерции:

центробежную , (5.15)

и кориолисову . (5.16)

Лекция 6 «Работа и энергия»

План лекции

1. Работа и кинетическая энергия. Теорема о кинетической энергии. Теорема Кёнига.

2. Консервативные и неконсервативные силы.

3. Потенциальная энергия.

 

– Конец работы –

Эта тема принадлежит разделу:

Курс общей физики (лекции) Раздел I Физические основы механики

На сайте allrefs.net читайте: Москва, 2003. А В Прокопенко...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Движение тел переменной массы. Реактивное движение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Москва, 2003
  Лекция 1 «Кинематика материальной точки» План лекции. 1. Введение. Физика — основа современного естествознания. 1.1. Из истории меха

Из истории механики

Скорость движения
Систему координат выберем так, чтобы одна из осей (например, х) совпала с прямолинейной траекторией движения. При таком выборе две другие координаты частицы М меняться не будут y

Ускорение
В общем случае прямолинейного движения скорость материальной точки может меняться во времени: V = V(t). Пусть в момент времени t1 скорость была V

Равномерное движение
Равномерным называется движение частицы, если её координата является линейной функцией времени x(t) = A + B t. (1.9) Здесь А и В — постоянные величины.

Равнопеременное движение
Равнопеременным называется движение материальной точки, если её координата является квадратичной функцией времени х = А +В t + С t2. (1.13) Раскрое

Сложение (вычитание) векторов
(2.1) Сложение векторов производится по правилу параллелограмма (рис. 2.

Скалярное произведение двух векторов.
По определению скалярным произведением векторов и

Векторное произведение
Результатом векторного произведения векторов и

Производная вектора
Пусть вектор меняется по известному закону со временем.

Скорость движения
Зададим криволинейное движение частицы М зависимостью её радиус-вектора от времени (рис. 2.7):

Ускорение. Нормальное и тангенциальное ускорение. Радиус кривизны траектории
Движение по криволинейной траектории всегда происходит с переменной скоростью. Пусть

Движение материальной точки по окружности
Положение частицы М, движущейся по окружности радиуса R, можно задать в любой момент времени углом поворота её радиус-вектора j = j(t) (рис. 2.14). Угол j отсчитывается от наперёд выб

Первый закон Ньютона
Существуют системы отсчёта, в которых свободные частицы движутся прямолинейно и равномерно, либо остаются в состоянии покоя. Свободными называются тела, не испытывающие действия со стороны

Второй закон Ньютона. Сила
Введя понятие «импульс тела», можно так сформулировать первый закон Ньютона: если на тело не действуют никакие другие тела, его импульс остаётся постоянным. Значит, изменение импуль

Третий закон Ньютона
Действие одного тела на другое носит характер взаимодействия, в котором возникают две силы: действия

Силы в природе
Всё многообразие сил в природе можно свести к четырём типам взаимодействий: 1) гравитационному, 2) электромагнитному, 3) ядерному сильному и 4) ядерному слабому. Два первых взаимодействия

Сухое трение
Приложим «небольшую» силу к телу, лежащему на горизонтальной поверхности. «Небольшую» — то есть, недостаточную для начала движения. Тело будет оставаться в покое, потому что кроме приложенной нами

Вязкое трение
Сила вязкого трения действует на тело, движущееся в вязкой среде (жидкой или газообразной). Она зависит от формы и размеров тела, скорости его движения, а также от физических свойств среды: в частн

Упругие силы. Закон Гука
Упругими называются силы, возникающие при упругих деформациях тел. Рассмотрим зависимость деформации металлического стержня или струны от величины внешней растягивающей силы F (рис.

Закон сохранения импульса
Импульс тела — вектор, равный произведению массы этого тела на его скорость:

Теория о движении центра масс
Рассмотрим движение системы «n» взаимодействующих частиц. Центром масс системы называется точка, радиус-вектор которой отвечает следующему условию

Работа и кинетическая энергия
По определению, элементарной работой силы на бесконечно малом перемещении

Консервативные и неконсервативные силы
Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек. К классу консервативных относятся, например,

Потенциальная энергия
Состояние механической системы характеризуют потенциальной энергией, если на систему действуют только консервативные силы. Рассмотрим два состояния системы: потенциальную энергию в одном и

Механическая энергия. Закон сохранения механической энергии
На прошлой лекции было введено понятие потенциальной энергии системы. По определению разность потенциальных энергий системы в двух состояниях равна работе, совершаемой консервативными сила

Работа неконсервативных сил
Рассмотрим систему n материальных частиц. Пусть при их взаимодействии друг с другом возникают только консервативные силы

Силы и потенциальная энергия
Эту лекцию мы начали с вычисления потенциальной энергии упруго деформированной пружины. Зная характер силы, возникающей при деформации пружины — закон Гука — мы смогли вычислить её энергию.

Момент силы и момент импульса относительно неподвижного центра и неподвижной оси
Рассмотрим движение материальной точки m под действием силы . Положение это

Уравнение моментов для материальной точки и системы материальных точек
Рассмотрим систему двух взаимодействующих частиц (рис. 8.4). На этом рисунке и

Закон сохранения момента импульса
Анализируя уравнение моментов относительно произвольного центра и неподвижной оси, мы говорили уже об условиях, при которых момент импульса системы не будет меняться во времени. Сформулиру

Модель твердого тела в механике. Поступательное и вращательное движение твердого тела
Все тела под действием приложенных сил деформируются, то есть в большей или меньшей степени меняют свою форму и размеры. Если эти деформации незначительны и не оказывают влияния на движение тела, т

Основное уравнение динамики вращательного движения вокруг неподвижной оси
При вращении твёрдого тела относительно неподвижной оси, все точки тела движутся по плоским круговым траекториям. Выделим частицу mi тела, вращающегося вокруг оси z (рис. 9

Теорема Гюйгенса-Штейнера
Момент инерции тела относительно произвольной оси (I) равен сумме момента инерции Ic относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тел

Полная система уравнений, описывающая произвольное движение твердого тела. Условия его равновесия и покоя
Как уже отмечалось, произвольное движение твердого тела может быть представлено совокупностью двух простых движений: поступательного и вращательного. Причем деление произвольного движения на состав

Энергия движущегося тела
2.1. Кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной оси В твёрдом теле, вращающемся с угловой скоростью w относительно неподвижной оси z, выдел

Кинетическая энергия тела при плоском движении
Любое движение твёрдого тела может быть представлено суперпозицией двух движений — поступательного и вращательного. Представим плоское движение тела суммой поступательного со скоростью

Скатывание тел с наклонной плоскости
С тем, чтобы проиллюстрировать применение законов динамики твёрдого тела, решим задачу о скатывании цилиндра с наклонной плоскости (рис. 10.5). Сплошной цилиндр массы m и радиуса

Давление жидкости. Законы гидростатики
Твёрдые тела обладают упругостью объёма и формы. Это означает, что упругие силы сопротивления препятствуют любым изменениям объёма и формы твёрдого тела. Особенности молекулярного строения

Стационарное течение жидкости. Уравнение неразрывности
Параметры текущей жидкости — скорость, плотность, давление и другие — в общем случае являются функциями времени и положения точки в потоке. Если они не зависят от времени, то есть остаются постоянн

Основной закон динамики для идеальной жидкости. Уравнение Бернулли
При течении жидкости между её отдельными частицами возникают силы вязкого сопротивления. В газах эти силы сравнительно невелики, и ими можно пренебречь. Однако и во многих случаях течения жидкости

Уравнение Бернулли
Рассмотрим стационарное течение идеальной жидкости. Выделим в потоке трубку тока, а в ней — объём, ограниченный стенками трубки и двумя сечениями S1 и S2 (рис. 1

Истечение жидкости из сосуда
Вычислим скорость истечения жидкости через отверстие в сосуде (рис. 11.7). Выделим в толще жидкости трубку тока. При этом не важна конфигурация этой трубки, важно, что одно её сечение расположено н

Манометрический расходомер
Вычислим секундный расход жидкости, протекающей по горизонтальной трубе. Для этого вмонтируем в трубопровод расходомер в виде локального сужения трубы (рис. 11.8).

Периодические процессы. Гармонические колебания
Периодическими называются процессы, в точности повторяющиеся через равные промежутки времени: смена дня и ночи, движение поршня в цилиндре двигателя, колебание маятника часов, переменный ток и т.д.

Собственные незатухающие колебания
Классифицируя колебания, их делят, прежде всего, на собственные и вынужденные. Представить себе собственные колебания осциллятора очень просто: отведите из положения равновесия обычны

Пружинный осциллятор
Пружинный маятник — это грузик массой m, прикреплённый к пружине жесткостью k. Грузик может двигаться вдоль оси x по горизонтальной поверхности без трения (рис. 12.4). Начало отсчета

Математический маятник
Математический маятник — это идеализированная система, представляющая собой материальную точку на невесомой и нерастяжимой нити. Хорошим приближением к этой модели является маленький тяжелый шарик

Собственные колебания физического маятника
Физическим маятником можно назвать любое твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной точки или оси. Возьмём в качестве такого маятника однородный тонкий стерже

Сложение гармонических колебаний. Метод векторных диаграмм
Гармоническое колебание x = a Cos (wt + a) геометрически может быть представлено проекцией на произвольное направление x вектора

Энергия гармонического осциллятора
Собственные незатухающие колебания возникают в системе при выполнении двух условий: во-первых, при смещении из положения равновесия должна возникать возвращающая сила, пропорциональная смещению (уп

Собственные затухающие колебания
До сих пор мы рассматривали колебательные процессы в системах, где действовала одна единственная сила — упругая или квазиупругая («как упругая»). Уравнение такого движения записывается просто:

Вынужденные колебания. Резонанс. Амплитуда и фаза вынужденных колебаний
Рассмотрим колебания, которые поддерживаются в системе внешней гармонической силой F = F0Coswt. Такие колебания называются вынужденными. Обратимся вновь к п

Постулаты специальной теории относительности. Преобразования Лоренца
В релятивистской механике, также как и в классической, предполагается, что время однородно, а пространство однородно и изотропно. Фундаментом специальной теории относительности являются дв

Основное уравнение релятивистской динамики
Экспериментально установлено, что в области релятивистских скоростей становится заметной зависимость массы частицы от скорости

Закон эквивалентности массы и энергии
В соответствии с законом Эйнштейна полная энергия системы пропорциональна её релятивистской массе:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги