рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Законы излучения абсолютно черного тела

Законы излучения абсолютно черного тела - раздел Механика, КОЛЕБАНИЯ И ВОЛНЫ   Спектральная Плотность Излучения Абсолютно Черного Тела Являе...

 

Спектральная плотность излучения абсолютно черного тела является универсальной функцией длины волны и температуры. Это значит, что спектральный состав и энергия излучения абсолютно черного тела не зависят от природы тела.

Формулы (1.1) и (1.2) показывают, что зная спектральную и интегральную плотность излучения абсолютно черного тела, можно вычислить их для любого нечерного тела, если известен коэффициент поглощения последнего, который должен быть определен экспериментально.

Исследования привели к следующим законам излучения абсолютно черного тела.

1. Закон Стефана — Больцмана: Интегральная плотность излучения абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры

 

R=σT4

 

Величина σ называется постоянной Стефана Больцмана:

σ = 5,6687·10-8 Дж·м - 2·с - 1 ·К – 4.

Энергия, испускаемая за время t абсолютно черным телом с излучающей поверхностью S при постоянной температуре Т,

 

W=σT4St

 

Если же температура тела изменяется со временем, т.е. Т = Т (t), то

 

 

 

Закон Стефана — Больцмана указывает на чрезвычайно быстрый рост мощности излучения с возрастанием температуры. Например при повышении температуры с 800 до 2400 К (т.е. с 527 до 2127° С) излучение абсолютно черного тела возрастает в 81 раз. Если абсолютно черное тело окружено средой с температурой Т0, то око будет поглощать энергию, излучаемую самой средой.

В этом случае разность между мощностью испускаемого и поглощаемого излучений можно приближенно выразить формулой

 

U=σ(T4 – T04)

 

К реальным телам закон Стефана — Больцмана не применим, как наблюдения показывают более сложную зависимость R от температуры, а также — от формы тела и состояния его поверхности.

2. Закон смещения Вина. Длина волны λ0, на которую приходится максимум спектральной плотности излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре тела:

 

λ0= или λ0Т = b.

 

Константа b, называемая постоянной закона Вина, равна b = 0,0028978 м · К (λ выражена в метрах).

Таким образом, при повышении температуры растет не только полное излучение, но, кроме того, изменяется распределение энергии по спектру. Например, при малых температурах тела изучают главным образом инфракрасные лучи, а по мере повышения температуры излучение делается красноватым, оранжевым и, наконец, белым. На рис. 2.1 показаны эмпирические кривые распределения энергии излучения абсолютно черного тела по длинам волн при разных температурах: из них видно, что максимум спектральной плотности излучения при повышении температуры смещается в сторону коротких волн.

3. Закон Планка. Закон Стефана — Больцмана и закон смещения Вина не решают основной задачи о том, как велика спектральная плотность излучения, приходящаяся на каждую длину волны в спектре абсолютно черного тела при температуре Т. Для этого надо установить функциональную зависимость и от λ и Т.

Основываясь на представлении о непрерывном характере испускания электромагнитных волн и на законе равномерного распределения энергии по степеням свободы (принятых в классической физике), были получены две формулы для спектральной плотности и лучения абсолютно черного тела:

1) формула Вина

 

где a и b — постоянные величины;

2) формула Рэлея — Джинса

 

uλТ = 8πkT λ – 4 ,

 

где k — постоянная Больцмана. Опытная проверка показала, что для данной температуры формула Вина верна для коротких волн (когда λТ очень мало и дает резкие схождения опытом в области длинных волн. Формула Рэлея — Джинса оказалась верна для длинных волн и совершенно не применима для коротких (рис. 2.2).

Таким образом классическая физика оказалась неспособной объяснить закон распределения энергии в спектре излучения абсолютно черного тела.

Для определения вида функции uλТ понадобились совершенно новые идеи о механизме испускания света. В 1900 г. М. Планк высказал гипотезу, что поглощение и испускание энергии электромагнитного излучения атомами и молекулами возможно только отдельными «порциями», которые получили название квантов энергии. Величина кванта энергии ε пропорциональна частоте излучения v (обратно пропорциональна длине волны λ):

 

ε = hv = hc/λ

 

Коэффициент пропорциональности h = 6,625·10-34 Дж·с и называется постоянной Планка. В видимой части спектра для длины волны λ = 0.5 мкм величина кванта энергии равна:

 

ε = hc/λ=3.79·10-19 Дж·с = 2.4 эВ

 

На основании этого предположения Планком была получена формула для uλТ:

 

(2.1 )

 

где k – постоянная Больцмана, с – скорость света в вакууме. л Кривая, соответствующая функции (2.1 ), так же показана на рис. 2.2.

Из закона Планка (2.11 ) получаются закон Стефана - Больцмана и закон смещения Вина. Действительно, для интегральной плотности излучения получаем

 

 

 

Расчет по этой формуле дает результат, совпадающий с эмпирическим значением постоянной Стефана — Больцмана.

Закон смещения Вина и его константу можно получить из формулы Планка нахождением максимума функции uλТ, для чего берется производная от uλТ по λ, и приравнивается нулю. Вычисление приводит к формуле:

 

(2.2)

Расчет постоянной b по этой формуле также дает результат, совпадающий с эмпирическим значением постоянной Вина.

Рассмотрим важнейшие применения законов теплового излучения.

А. Тепловые источники света. Большинство искусственных источников света является тепловыми излучателями (электрические лампы накаливания, обычные дуговые лампы и т. д.). Однако эти источники света не являются достаточно экономичными.

В § 1 было сказано, что глаз обладает чувствительностью только к очень узкому участку спектра (от 380 до 770 нм); все остальные волны не оказывают зрительного ощущения. Максимальная чувствительность глаза соответствует длине волны λ = 0,555 мкм. Исходя из этого свойства глаза следует требовать от источников света такого распределения энергии в спектре, при котором максимальная спектральная плотность излучения падала бы на длину волны λ = 0,555 мкм или около нее. Если в качестве такого источника взять абсолютно черное тело, то по закону смещения Вина можно вычислить его абсолютную температуру:

 

К

 

Таким образом, наиболее выгодный тепловой источник света должен иметь температуру в 5200 К, что соответствует температуре солнечной поверхности. Такое совпадение является результатом биологического приспособления человеческого зрения к распределению энергии в спектре солнечного излучения. Но и у этого источника света коэффициент полезного действия (отношение энергии видимого излучения к полной энергии всего излучения) будет невелик. Графически на рис. 2.3 этот коэффициент выражается отношением площадей S1 и S; площадь S1 выражает энергию излучения видимой области спектра, S — всю энергию излучения.

Расчет показывает, что при температуре около 5000—6000 К световой к. п. д. равен всего 14—15% (для абсолютно черного тела). При температуре же существующих искусственных источников света ( 3000 К) этот к. п. д. составляет всего около 1—3%. Такая невысокая «световая отдача» теплового излучателя объясняется тем, что при хаотическом движении атомов и молекул возбуждаются не только световые (видимые), по и другие электромагнитные волны, которые не оказывают светового воздействия н глаз. Поэтому невозможно избирательно заставить тело излучать только те волны, к которым чувствителен глаз: обязательно излучаются и невидимые волны.

Важнейшие из современных температурных источников света — это электрические лампы накаливания с вольфрамовой нитью. Температура плавления вольфрама равна 3655 К. Однако нагрев нити до температур выше 2500 К опасен, так как вольфрам при этой температуре очень быстро распыляется, и нить разрушается. Для уменьшения распыления нити было предложено наполнять лампы инертными газами (аргон, ксенон, азот) при давлении около 0,5 атм. Это позволило поднять температуру нити до 3000—3200 К. При этих температурах максимум спектральной плотности излучения лежит в области инфракрасных волн (около 1,1 мкм), поэтому все современные лампы накаливания имеют к. п. д. немногим больший 1%.

Б. Оптическая пирометрия. Изложенные выше законы излучения черного тела позволяют определять температуру этого тела, если известна длина волны λ0, соответствующая максимуму uλТ (по закону Вина), или если известна величина интегральной плотности излучения (по закону Стефана — Больцмана). Эти методы определения температуры тела по его тепловому излучению на кают я оптической пирометрией; они особенно удобны при измерении очень высоких температур. Так как упомянутые законы применимы только к абсолютно черному телу, то оптическая пирометрия, основанная на них, дает хорошие результаты только при измерении температур тел, близких по своим свойствам к абсолютно черному. На практике таковыми являются заводские печи, лабораторные муфельные печи, топки котлов и т. п. Рассмотрим три способа определения температуры тепловых излучателей:

а. Метод, основанный на законе смещения Вина. Если нам известна та длина волны, на которую приходится максимум спектральной плотности излучения, то температура тела может быть вычислена по формуле (2.2).

В частности, таким способом определяется температура на поверхности Солнца, звезд и т. д.

Для нечерных тел этот способ не дает истинную температуру тела; если в спектре излучения имеется один максимум и мы рассчитаем Т по формуле (2.2), то расчет дает нам температуру абсолютно черного тела, имеющего почти такое же распределение энергии в спектре, как и испытуемое тело. При этом цветность излучения абсолютно черного тела будет одинакова с цветностью исследуемого излучения. Такая температура тела называется его цветовой температурой.

Цветовая температура нити лампы накаливания равна 2700—3000 К, что очень близко к ее истинной температуре.

б. Радиационный способ измерения температур основан на измерении интегральной плотности излучения тела R и вычисления его температуры о закону Стефана — Больцмана. Соответствующие приборы называются радиационными пирометрами.

Естественно, что если излучающее тело не является абсолютно черным, то радиационным пирометр не даст истинной температуры тела, а покажет ту температуру абсолютно черного тела, при которой интегральная плотность излучения последнего равна интегральной плотности излучения испытуемого тела. Такая температура тела называется радиационной, или энергетической, температурой.

Из недостатков радиационного пирометра укажем на невозможность его применения для определения температур небольших объектов, а также на влияние среды, находящейся между объектом и пирометром, которая поглощает часть излучения.

в. Яркостный метод определения температур. Принцип действия его основан на визуальном сравнении яркости раскаленной нити лампы пирометра с яркостью изображения накаленного испытуемого тела. Прибор представляет собой зрительную трубу с помещенной внутри электрической лампой, питаемой от аккумулятора. Равенство зрительно наблюдаемое через монохроматический фильтр, определяется по исчезновению изображения нити на фоне изображения раскаленного тела. Накал нити регулируется реостатом, а температура определяется по шкале амперметра, градуированного прямо на температуру.

– Конец работы –

Эта тема принадлежит разделу:

КОЛЕБАНИЯ И ВОЛНЫ

На сайте allrefs.net читайте: КОЛЕБАНИЯ И ВОЛНЫ. ВВЕДЕНИЕ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Законы излучения абсолютно черного тела

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Образование и распространение волн в упругой среде
Начнем с определения упругой среды. Как можно заключить из названия упругая среда это такая среда в которой действуют силы упругости. Применительно к нашим целям, добавим, что при любом возмущении

Линию, вдоль которой происходит распространение фронта волны, называют лучом.
  Нетрудно сообразить, что в изотропной среде луч всегда нормален (перпендикулярен) к волновой поверхности. В изотропной среде все лучи представляют собой прямые линии. Каждая прямая,

Плоскость, проходящая через луч, вдоль которого распространяется волна, и через направление колебаний частиц в ней называется плоскостью поляризации.
  Эта плоскость может оставаться одной и той же при перемещении вдоль луча, в таком случае волна называется линейно поляризованной, а может как то менять свою ориентацию в прос

Уравнение волны
При описании волнового процесса требуется найти амплитуды и фазы колебательного движения в различных точках среды и изменение этих величин с течением времени. Эта задача может быть решена, если изв

Поток энергии в волновых процессах
    Процесс распространения волны в каком-нибудь направлении в среде сопровождается переносом энергии колебаний в этом направлении. Допустим, что S есть часть фро

Эффект Допплера.
  Разберем вопрос о том, какова связь между колебаниями, испускаемыми источником, и колебаниями, воспринимаемыми каким-либо прибором, регистрирующим колебания, если источник и прибор

Стоячие волны
  Особым примером результата интерференции двух волн служат так называемые стоячие волны, образующиеся в результате наложения двух встречных волн с одинаковыми амплитудами.

Волновое уравнение
    Из курса электричества мы уже знаем, что переменное магнитное поле создает вихревое электрическое поле. Линии этого поля замкнуты, оно существует независимо от элект

Свойства электромагнитных волн
В предыдущем параграфе мы видели, что в электромагнитной волне векторы Е и Н перпендикулярны друг другу. Но кроме того они еще и перпендикулярны напр

Энергия и импульс электромагнитного поля
  Наверное вы уже поняли, что основные свойства волн не зависят от их природы. Это касается и такого важного свойства как перенос энергии. Подобно механическим волнам, электромагнитны

Электромагнитная природа света
    С самой ранней эпохи еще до древних греков, когда, как об этом говорит легенда, Аполлон разъезжал в огненной колеснице по небу, и до наших дней, когда Тверская утопа

Естественный свет
В предыдущей главе мы назвали простейшей синусоидальную волну вида:   (2.1) где конечно ω = 2πν . Заметим здесь, такую волну называют ещ

Волновой пакет
Понятие фазовой скорости, введенное нами ранее, применимо только к строго монохроматическим волнам, которые реально не осуществимы, так как они должны были бы существовать неограниченно долго во вр

Законы отражения и преломления света
  Первые законы оптических явлений были установлены на основе представлений о прямолинейных световых лучах. Они относились к изменениям направления распространения света при отражении

Геометрическая оптика
    Устройство большого числа оптических приборов базируется на представлении о световых лучах, распространяющихся прямолинейно в однородном веществе и испытывающих отра

Увеличение
  Выберем в качестве светящегося предмета линию А1В1, перпендикулярную к оси, и построим ее изображение А2В2 (рис. 6.1). Отно

Центрированная оптическая система
Случай преломления на одной сферической поверхности сравнительно редок. Большинство реальных преломляющих систем содержит, по крайней мере, две преломляющие поверхности (линза) или большее их число

Преломление в линзе. Общая формула линзы
    Большое значение имеет простейший случай центрированной системы, состоящей всего из двух сферических поверхностей, ограничивающих какой-либо прозрачный хорошо прелом

Глаз как оптическая система
Глаз человека представляет собой сложную оптическую систему, которая по своему действию аналогична оптической системе фотоаппарата. Схематическое устройство глаза представлено на рис. 1. Глаз имеет

Фотометрические понятия и единицы
Воздействие света на глаз или какой-либо другой приемный аппарат состоит прежде всего в передаче этому регистрирующему аппарату энергии, переносимой световой волной. Поэтому, прежде чем рассматрива

Понятие о когерентности
Закон независимости световых пучков, упомянутый ранее, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Это положение было ясно сформулировано Гюйгенсом, который писал в сво

Интерференция волн
  В соответствии с определением предыдущего параграфа мы говорим об интерференции волн, когда при их совместном действии не происходит суммирования интенсивностей. Условием инт

Осуществление когерентных волн в оптике
Опыт показывает, что когда два независимых источника света, например две свечи, или даже два различных участка одного и того же светящегося тела посылают световые волны в одну область пространства,

Цвета тонких пластинок
Как было выяснено ранее, при точечных источниках света будут наблюдаться резкие интерференционные картины. В таком случае при любом положении экрана, пересекающего систему поверхностей максимумов и

Кольца Ньютона
    Особый исторический интерес представляет случай интерференции в тонком воздушном слое, известный под именем колец Ньютона. Эта картина наблюдается, когда выпуклая по

Интерференция в плоскопараллельных пластинках. Полосы равного наклона
    Из соотношения Δ = 2hn cos r следует, что для плоскопараллельной однородной пластинки (h и п всюду одни и те же) разность хода может

Интерферометр Майкельсона
Рассмотрим вначале подробнее одну схему, на которой очень отчетливо выступают все наиболее существенные детали интерференционной схемы. Эта схема, известная под названием билинзы Бийе, осу

Интерференция немонохроматических световых пучков
Как уже упоминалось интерференция немонохроматического света приводит к сложной картине, состоящей из совокупности максимумов и минимумов, соответствующих разным λ,. Если λ имеет все возм

Принцип Гюйгенса — Френеля
Явления интерференции света во всем их многообразии служат убедительнейшим доказательством волновой природы световых процессов. Однако окончательная победа волновых представлений была невозможна бе

Зонная пластинка
  Хорошей иллюстрацией, подтверждающей приведенный метод рассуждения Френеля, может служить опыт с зонной пластинкой. Как следует из сказанного выше, радиус т-й зоны Френеля ра

Графическое вычисление результирующей амплитуды
  Рассмотрение вопроса о действии световой волны в точке В (см. рис. 1.4), равно как и многих других аналогичных вопросов, чрезвычайно удобно производить, пользуясь графически

Дифракция Френеля на круглом отверстии
  Применение метода Френеля позволяет предвидеть и объяснить особенности в распространении световых волн, наблюдающиеся тогда, когда часть фронта идущей волны перестает действовать вс

Дифракция Фраунгфера от щели
    До сих пор мы рассматривали дифракцию сферических или плоских воли, изучая дифракционную картину в точке наблюдения, лежащей па конечном расстоянии от препятствия. И

Дифракция на двух щелях
Рассмотрим опять явление дифракции на щели по схеме, изображенной на рис. 5.2. Положение дифракционных максимумов и минимумов не будет зависеть от положения щели, ибо положение максимумов определяе

Дифракционная решетка
  Рассмотрение дифракции на двух щелях показывает, что в этом случае дифракционные максимумы становятся более узкими, чем в случае одной щели. Увеличение числа щелей делает это явлени

Волновые поверхности в одноосном кристалле.
  Объяснение двойного лучепреломления в одноосных кристаллах было впервые дано Гюйгенсом в его „Трактате о свете" (1690 г.). Гюйгенс предположил, что обыкновенному лучу соответст

Поляризационные приборы.
    Для получения из естественного света плоско поляризованного света можно воспользоваться либо поляризацией при отражении под углом Брюстера, либо двойным лучепреломле

Интерференция поляризованных лучей. Эллиптическая и круговая поляризация.
    Лучи, обыкновенный и необыкновенный, возникающие при двойном лучепреломлении из естественного свети, не когерентны. Если естественный луч разложить па два луча, поля

Кристаллическая пластинка между николями.
  До сих пор мы рассматривали интерференцию поляризованных лучей, колебания в которых происходят во взаимно перпендикулярных направлениях. Рассмотрим теперь интерференцию двух поляриз

Искусственное двойное лучепреломление.
  В начале девятнадцатого столетия было открыто возникновение двойного лучепреломления в прозрачных изотропных телах под влиянием механической деформации. Оптическую анизотропию, появ

Двойное лучепреломление в электрическом поле.
    Другим примером искусственной анизотропии является анизотропия, возникающая в телах под влиянием электриче­ского поля. Этот вид анизотропии был открыт в 1875 г. Керр

Вращение плоскости поляризации.
    В направлении оптической оси свет распространяется в кристалле так же, как и в однородной среде, не давая двойного лучепреломления. Однако было замечено, что в крист

Магнитное вращение плоскости поляризации.
    Вещества, не обладающие естественной способностью вращать плоскость поляризации, приобретают такую способность под влиянием внешнего магнитного поля. Явление магнитн

Дисперсия света. Методы наблюдения и результаты
Любой метод, который применяется для определения показателя преломления, — преломление в призмах, полное внутреннее отражение, интерференционные приборы — может служить для обнаружения дисперсии.

Основы теории дисперсии
    Плодотворная попытка истолкования богатого материала, полученного экспериментальным путем, была сделана еще в «упругой» теории света. Хотя эта теория не могла связат

Поглощение (абсорбция) света
Прохождение света через вещество ведет к возникновению колебаний электронов среды под действием электромагнитного поля волны и сопровождается потерей энергии последней, затрачиваемой на возбуждение

Ширина спектральных линий и затухание излучения
  Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин в

Прохождение света через оптически неоднородную среду
Как уже упоминалось ранее, вторичные волны, вызываемые вынужденными колебаниями электронов, рассеивают в стороны часть энергии, приносимой световой волной. Другими словами, распространение света в

Частота и поляризация – основные характеристики света в долазерной оптике
Световая волна, являющаяся волной электромагнитной, характеризуется частотой, амплитудой и поляризацией. Гармоническая (или монохроматическая) волна, распространяющаяся вдоль оси , описывается выра

Роль интенсивности света
В подавляющем числе оптических эффектов, исследованных до создания лазеров, амплитуда световой волны А все же не влияла на характер явления. В большинстве случаев количественные, а тем более

Линейный атомный осциллятор
Взаимодействие света со средой. Причины, по которым в линейной оптике характер явлении не зависит от интенсивности излучения, можно выявить, обратившись к ее теоретическим основам. Известно, что эф

Нелинейный атомный осциллятор. Нелинейные восприимчивости
Движение электрона в поле ядра — это движение в потенциальной яме, имеющей конечную глубину (рис. 1,а). Наглядным, хотя и грубым, аналогом движения электрона в поле ядра и соответству

Причины нелинейных оптических эффектов
Нелинейный отклик атомного или молекулярного осциллятора на сильное световое поле – наиболее универсальная причина нелинейных оптических эффектов. Существуют и другие причины: например, изменение п

Фотоны друг с другом непосредственно не взаимодействуют
В физике используется (и подтверждается) представления о «непосредственном взаимодействии», приводящем к рассеянию частиц друг на друге, к поглощению одних частиц другими, взаимным превращениям час

Однофотонные и многофотонные переходы
Оптические переходы разделяются на однофотонные и многофотонные. В однофотонном переходе участвует, т. е. испускается либо поглощается один фотон. В многофотонном переходе участвуют о

Виртуальный уровень.
На рисунке 1а изображены два однофотонных перехода: сначала поглощается один фотон с энергией и микрообъект переходит с уровня 1 на уровень 2, затем поглощается другой фотон и микрообъект пе

Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?
Рассмотрим различные процессы «превращения» одних фотонов в другие фотоны. Начнем с процесса, представленного на рисунке 2. Микрообъект поглощает фотон с энергией и переходит с уровня 1

Процесс, описывающий генерацию второй гармоники.
Многофотонные процессы, в которых начальное и конечное состояния микрообъекта одинаковы, представляют для нелинейной оптики особый интерес. Выше мы рассмотрели двухфотонный процесс. Далее рассмотри

Некогерентные и когерентные процессы преобразования света в свет
В предыдущем вопросе на примере (элементарных актов взаимодействия фотонов с микрообъектом были рассмотрены различные процессы преобразования света в свет. В одних процессах переходы с поглощением

Тепловое излучение. Закон Кирхгофа
  Тепловое излучение — это электромагнитное излучение, возбуждаемое за счет энергии теплового движения атомов и молекул. Если излучающее тело не получает теплоты извне, то оно охлажда

Фотоэффект
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было в

Специальная теория относительности.
  В классической физике до появления теории относительности (1905 г.), предполагалось, что любой физический процесс, использо­ванный (как «эталонный») для измерения времени, выявляет

Преобразования Лоренца.
  Допустим, что один из законов физики, полученный относительно системы отсчета S, имеет вид f (x, y, z, t . . . )=0,   а относительно си

Следствия из преобразований теории относи­тельности.
  Рассмотрим наиболее важные следствия преобра­зований Лоренца.   а) Длина тел в разных системах. Преобразова­ния Лоренца показывают, что одно и то же

Механика теории относительности.
  Рассуждения, приведенные выше, показывают, что оптические (и электро­магнитные) явления подтверждают кинематику теории отно­сительности, вытекающую из преобразований Лоренца. Есте­с

Эффект Комптона
  Рисунок 1 Особенно отчетливо проявляются корпускулярные свойства света в явлении, которое получило название

Постулаты Бора. Опыт Франка и Герца
В предыдущем параграфе было выяснено, что ядерная модель атома в сочетании с классической механикой и электродинамикой оказалась неспособной объяснить ни устойчивость атома, ни характер атомного сп

Волновые свойства частиц. Соотношение неопределенностей.
  В 1923 году произошло примечательное событие, которое в значительной степени ускорило развитие квантовой физики. Французский физик Луи де Бройль выдвинул гипотезу об универсальности

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги