рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

СООТНОШЕНИЕ НЕОПРЕДЕЛЁННОСТЕЙ

СООТНОШЕНИЕ НЕОПРЕДЕЛЁННОСТЕЙ - раздел Энергетика, ВОЛНЫ ДЕ БРОЙЛЯ Обнаружение Волновых Свойств Микрочастиц Означает, Что Классическая Механика ...

Обнаружение волновых свойств микрочастиц означает, что классическая механика не может дать правильного описания поведения микрообъектов. Новая физическая теория, устанавливающая законы движения и взаимодействия микрочастиц и фотонов с учетом их волновых и корпускулярных свойств, была разработана, главным образом, тремя физиками: Э. Шредингером (австр.), В. Гейзенбергом (нем.) и П. Дираком (англ.) в начале ХХ века и получила название волновой или квантовой механики.

В классической механике всякая частица движется по определённой траектории, так что ее координаты и импульс могут быть точно рассчитаны для любого момента времени. Совсем по иному обстоит дело, если рассматривается вопрос о локализации волнового процесса, т.е. о месте нахождения волны в данный момент времени. Ведь волна не имеет ни определенной траектории, ни определенной координаты. Т.о. возникает необходимость внести некоторые ограничения в применении к объектам микромира понятий классической механики.

Эти ограничения сформулированы Гейзенбергом и получили название соотношений неопределенностей. Основное из них гласит: чем точнее определены какие-либо из координат частицы, тем больше неопределенность в значении составляющей импульса (или скорости) в том же направлении, и наоборот. Количественно это записывается так:

 

Δx·Δpx ≥ ђ Δx·Δυx ≥ ђ/m,

Δy·Δpy ≥ ђ Δy·Δυy ≥ ђ/m, (3)

Δz·Δpz ≥ ђ Δz·Δυ z ≥ ђ/m,

 

где Δx, Δy, Δz – неопределенности координат; Δpx, Δpy, Δpz – неопределенности проекций импульса на оси – x, y, z; Δυx, Δυy , Δυz – неопределенности проекций скоростей на соответствующие оси; m – масса микрочастицы; ђ = h/2π – постоянная Планка с крышечкой.

Из соотношения неопределенностей следует: если положение частицы точно известно (Δx=0), то в этом состоянии проекция импульса на ось х-ов совершенно не определена (Δpх → ∞), и наоборот.

Покажем, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Рассмотрим мысленный опыт по дифракции потока электронов на щели шириной Δx ~ λ, расположенной перпендикулярно к направлению движения частиц (рис. 3).

До прохождения через щель pх = 0; ∆pх = 0, а координата x не определена, т.е. ∆x→ ∞. В момент прохождения через щель координата электрона имеет неопределенность ∆x равную ширине щели. В то же время, из-за дифракции, электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2φ, где φ – угол дифракции. Теперь появляется неопределенность в значении составляющей импульса вдоль оси x-ов:

 

∆pх = p∙sinφ = h sinφ / λБ . (4)

 

Если даже ограничиться электронами, попадающими на экран в пределах центрального максимума, то sinφ найдем из условия 1-ого минимума на щели (bsinφ = kλ, где b – ширина щели, k – порядок минимума):

x∙sinφ = λБ. (5)

 

Подставляя выражение для sinφ в (4), после преобразования получим

 

Δx·Δpx = h (6)

 

Учитывая главные max более высоких порядков, куда тоже попадают электроны, окончательно будем иметь:

 

Δx·Δpx ≥ h ≥ ђ (7)

 

Следует подчеркнуть, что невозможность одновременного и точного определения координаты и соответствующей составляющей импульса не связана с несовершенством наших знаний или неточностью приборов, а является следствием специфических и вместе с тем объективных свойств микрообъектов.

Проиллюстрируем оценку границ применимости теории на примерах.

1. Скорость движения электрона в электроннолучевой трубке составляет υх=106 м/с и определена с точностью до Δυх=102 м/с. Тогда неопределенность координаты:

Δx·Δυx ≥ ђ/m, .

Т.е. в данном случае можно говорить о точке падения каждого отдельного электрона на экран и о траектории.

2. Скорость движения электрона в атоме водорода υх ~ 106 м/с, неопределенность координаты порядка диаметра атома Δx = d ~10-10 м. Тогда неопределенность величины скорости

Т.е. неопределенность скорости соизмерима с самой скоростью. Это означает, что электрон не может теперь рассматриваться как дискретная частица.

Соотношение неопределенностей может быть записано для любой пары взаимосвязанных характеристик состояния микрочастиц, например, для энергии и времени пребывания в этом энергетическом состоянии:

ΔЕ·Δt ≥ ђ. (8)

 

Из данного соотношения видно, что разброс энергии ΔЕ = ђ/Δt возрастает с уменьшением среднего времени пребывания системы в состоянии с энергией Е. Отсюда, следует, что частота излученного фотона также должна иметь неопределенность:

Δv = ΔЕ / h, (9)

– Конец работы –

Эта тема принадлежит разделу:

ВОЛНЫ ДЕ БРОЙЛЯ

Э Л Е М Е Н Т Ы К В А Н Т О В О Й М Е Х А Н И К И ВОЛНЫ ДЕ БРОЙЛЯ Т о согласно де Бройлю с... ЭЛЕКТРОННЫЙ МИКРОСКОП ПОНЯТИЕ ОБ ЭЛЕКТРОННОЙ... Т е линии спектра обусловленные переходом электронов между уровнями Е и Е с Е Е Е будут иметь...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: СООТНОШЕНИЕ НЕОПРЕДЕЛЁННОСТЕЙ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ВОЛНЫ ДЕ БРОЙЛЯ
Применение модели строения атомов, предложенной в 1913 году Н. Бором (датч.), к многоэлектронным атомам, показало, что эта теория несостоятельна и требуется новый, отличный от законов классической

Волновые свойства частиц можно использовать не только для структурного дифракционного анализа, но и для получения увеличенных изображений предмета.
Предел разрешения оптического микроскопа (Лк. №11, ) определя­ется в основном наименьшим значением длины волны света, восп­ринимаемого глазом человека. Подставив в эту формулу значение длины волны

ВОЛНОВАЯ ФУНКЦИЯ
Дифракционная картина, наблюдаемая для микрочастиц, характеризуется неодинаковым распределением рассеянных частиц по разным направлениям. С точки зрения волновой теории это означает, что на

УРАВНЕНИЕ ШРЕДИНГЕРА
В зависимости от конкретных условий волновая функция, как основной носитель информации о корпускулярных и волновых свойствах микрочастиц должна иметь разный вид. Соответственно, уравнение из которо

ЭЛЕКТРОН В ПОТЕНЦИАЛЬНОЙ ЯМЕ
  Рассмотрим, в качестве примера использования уравнения Шредингера, задачу о движен

АТОМ ВОДОРОДА
Квантовомеханическое описание состояний атомов и молекул с помощью уравнения Шредингера является достаточно сложной задачей. Наиболее просто она решается для водородоподобных атомов, электронная об

Магнитное квантовое число – ml определяет значения проекций момента импульса Le на любое выбранное направление Z.
  Le,z=mlħ . (26)   При заданном l, ml принимает значения: 0, ±1, ±2, ±3…±l

ПРАВИЛА ЗАПОЛНЕНИЯ ЭНЕРГЕТИЧЕСКИХ УРОВНЕЙ
Распределение электронов по уровням происходит по общему правилу: электроны невозбужденного атома занимают состояния с наименьшей энергией и в соответствии с принципом Паули, который гласит:

От оболочек с меньшим значением суммы квантовых чисел (n+l) к оболочкам с большей суммой (n+l).

При одинаковом значении (n+l) – от оболочек с меньшим n к оболочкам с большим n.
Это значит в 21Sc (Sc - скандий) будет заполняться 3d оболочка. У этих правил, есть исключения,например, лантан – 57La , цери

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги