рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Топологический дизайн Metazoa

Топологический дизайн Metazoa - раздел Науковедение, ФРАКТАЛЫ И ХАОС В БИОЛОГИЧЕСКОМ МОРФОГЕНЕЗЕ Биологи Традиционно И Повсеместно Используют Язык Геометрии Эвклида Для Описа...

Биологи традиционно и повсеместно используют язык геометрии Эвклида для описания структур и динамики формообразования на субклеточном, клеточном, тканевом уровнях, в индивидуальном развитии организмов и в эволюционных перестройках. Однако для такого рода описаний применим и язык топологии, поскольку именно топология рассматривает наиболее общие пространственные свойства объектов. Необходимость применения топологического языка в биологии неоднократно декларировалась такими выдающимися математиками и биологами (D’Arcy Thompson, 1917; Needham, 1936; Waddington, 1940). Знаменитый математик, автор теории катастроф Рене Том неоднократно писал о необходимости топологического описания биологического морфогенеза (Thom, 1969, 1996). Том всегда подчеркивал дискретный характер биологического морфогенеза, качественная сторона которого не может быть сведена к количественным изменениям (Thom, 1969, 1996). Плодотворность топологического анализа и моделирования уже осознана; разработана методология, позволяющая описать топологические паттерны морфогенетических процессов на всех уровнях исследования живых организмов, поставлен и решается вопрос о топологической обусловленности и топологических ограничениях биологического морфогенеза (Преснов, Исаева, 1985; Исаева, Преснов, 1990). Топологический подход к описанию биологических форм и морфогенетических процессов уже становится обычным (Dubertret & Rivier, 1997; Chin-Sang, 2000; Jockusch, Dress, 2003).

Вслед за Томом мы применили топологические понятия для описания биологических форм в эволюции и онтогенезе (Преснов, Исаева, 1985; Presnov et al., 1988; Presnov & Isaeva, 1990; 1991; 1996; Исаева, Преснов, 1990; Чернышев и др., 2001) поскольку эволюционные и онтогенетические перестройки топологии организма представляют собой дискретные, качественные преобразования в биологическом морфогенезе.

Более того, топология дает возможность анализировать взаимосвязь локальных и глобальных аспектов морфогенеза и выявить топологические ограничения биологического морфогенеза. Используя концепцию позиционной информации и морфогенетических полей (Wolpert, 1969, 1989) , можно установить биологичские механизмы связи локального и интегрального порядка этих полей (Presnov, Isaeva, 1990, 1991, 1996; Allaerts, 1999).

Топологические ограничения биологического морфогенеза наиболее ясно могут быть выявлены в модельных системах in vitro. Например, в культуре миогенных клеток наблюдается фазовый переход клеточной системы - от отдельных беспорядочно расположенных миобластов к формированию клеточных потоков, что обусловлено взаимодействиями клетка-клетка и клетка-субстрат, создающих локальный порядок расположения клеток. При слиянии миобластов в миосимпласты с формированием миотуб вдоль траекторий полей направлений клеток происходит стабилизация возникшего паттерна с отчетливой визуализацией топологических сингулярностей полей направлений (рис. ).

Рис. . Топологические сингулярности полей направлений в миогенной культуре (Исаева, 1994)

Путем контактной ориентации клетка-клетка и клетка-субстрат осуществляется трансляция локального, ближнего порядка клеточных взаимодействий в дальний, глобальный порядок клеточных полей. Ограниченное число топологических особенностей полей направлений, возможных на плоскости, диктует и соответствующие ограничения планарного морфогенеза - в однослойной культуре (рис. 40).

Рис. . Сингулярности полей направлений на плоскости

(Исаева, Преснов, 1990; по: Минеев, 1982)

Поля направлений осей удлиненных клеток на субклеточном уровне детерминируются полями направлений структурных элементов цитоскелета, определяющих осевую ориентацию поляризованных клеток. Фибриллярные или тубулярные структуры цитоскелета (цитоматрикса) образованы удлиненными молекулярными комплексами, состоящими главным образом из полимеров актина, тубулина, белков промежуточных филаментов, обладающих жидкокристаллическими свойствами. Система топологических сингулярностей, или дефектов жидкокристаллической структуры – основа морфофункциональной организации цитоматрикса, выполняющего опорную, двигательную и интегрирующую клетку функции. К дефектам такого рода применимо высказывание Ларошфуко, приведенное в книге П. Де Жена о жидких кристаллах (1977, с. 145): «Есть недостатки, которые на деле блистают ярче, чем сами добродетели».

В свою очередь, сингулярности структуры цитоматрикса в определенной мере обусловлены самоорганизацией молекул в жидких кристаллах. Для примера рассмотрим самый простой случай так называемого нематического жидкого кристалла, упорядоченность которого определяется тенденцией удлиненных молекул выстраиваться параллельно друг другу (рис. ). Преимущественное направление длинных осей молекул описывается единичным вектором; распределение таких отрезков создает поле направлений. В двумерном нематике, как и в однослойной клеточной культуре, возможно существование лишь ограниченного числа топологических сингулярностей (рис. ).

В капле нематического жидкого кристалла влияние граничных условий и поверхностного натяжения на расположение молекул приводит к возникновению точечной трехмерной сингулярности (рис. ), «ежа» (либо двух особенностей на поверхности).

Рис. . Ориентация молекул нематического жидкого кристалла

Таким образом, в жидких кристаллах можно наблюдать как структурную самоорганизацию молекул, так и топологические ограничения морфогенеза в этой системе. Сходство точечной трехмерной сингулярности в капле нематика (рис. ) с центром организации микротрубочек эукариотических клеток не случайно: структуры цитоскелета обладают свойствами жидких кристаллов.

Рис. . Объемная точечная сингулярность в капле нематика

(Исаева, Преснов, 1990; по: Рожков, 1986)

К цитоматриксу (рис. 43) применимы также представления о перколяции – образовании связной сети, связного кластера с изменением свойств системы, фазовым переходом (Де Жен, 1982; Исаева, Преснов, 1990; рис. 44). Итак, определенные топологические ограничения биологического морфогенеза неизбежны и неустранимы.

Рис. 43. Организация цитоматрикса

(Исаева, Преснов, 1990; по: Porter, 1987)

Рис. Узлы решетки ниже порога перколяции (слева) и вблизи него (Шредер,

К настоящему времени топологический подход наиболее эффективно использован в молекулярной биологии для описания и анализа форм ДНК; топологический анализ структуры ДНК впервые был предпринят Ф. Криком (Crick, 1976) и с тех пор был существенно продвинут (см., например, Вологодский, 1988; Drabik et al., 1997).

Топология привлекалась также для анализа пространственной организации мембранных систем клетки и их динамики как на молекулярном, так и на субклеточном уровнях (Tashiro, 1983; Blobel, 1983; Исаева, Преснов, 1990; Gafvelin et al., 1997; см. также Jockusch, Dress, 2003). Подавляющее большинство одноклеточных эукариот имеют нулевой род поверхности, не изменяющийся при усложнении клеточной организации. Исключение составляют саркодовые с анастомозирующими псевдоподиями и некоторые надклеточные системы простейших. В первом случае число сквозных отверстий (топологических ручек) не постоянно и может изменяться в короткий промежуток времени. В надклеточных системах – колониях, плазмодиях, клеточных ассоциациях – образование ручек не связано с конкретными клетками, а является следствием их объединения, поэтому данное исключение практически не нарушает общего для одноклеточных правила - «запрета» на изменения рода поверхности. Некоторые бактерии (Microcyclus, Spirosoma) имеют тороидальную форму, не свойственную одноклеточным эукариотам. В клетках же многоклеточных животных, как правило, сквозные каналы не возникают, хотя и здесь есть исключения - пороциты многих губок и эндотелиальные клетки высших хордовых.

Поле исследований топологии организма многоклеточных животных в онтогенезе и эволюции, примыкающее к междисциплинарной области исследований хаоса и самоорганизации, остается в мировой науке почти не занятым.

Чтобы перевести анатомические описания на язык топологии, поверхность организма моделируется как непрерывная замкнутая поверхность, а морфогенез Metazoa – как топологические перестройки эпителиальной поверхности (Maresin& Presnov, 1985; Преснов, Исаева, 1985; Presnov & Isaeva, 1990, 1991, 1996; Jockush & Dress, 2003). Эпителиальные покровы организма характеризуются морфологической непрерывностью, замкнутостью и апикально-базальной полярностью. Появление эпителиальной ткани было одним из значительных эволюционных инноваций. При этом возникли специализированные апикальные комплексы межклеточных контактов и внеклекточное вещество специализировалось в базальный матрикс (см. Rieger & Ladurner, 2001). Пренебрегая толщиной эпителия, мы рассматриваем эпителиальные поверхности как гладкие, замкнутые, ориентируемые поверхности сферической или тороидальной формы. Топология неориентируемых поверхностей ленты Мебиуса и бутылки Клейна невозможна («запрещена») как для биологических мембран, так и для эпителиальных слоев (Исаева, Преснов, 1990; Jockush & Dress, 2003). Связность эпителиального слоя обеспечивается специализированными межклеточными контактами, интегрирующими клетки и их цитоскелет в единую морфофункциональную систему (см. Исаева, 1994). Такой топологический подход дает возможность рассматривать топологические перестройки организма как целого.

Для топологического описания не существенны ни геометрическая форма (линейные и угловые размеры, кривизна линий и поверхностей), ни частные морфологические детали организации объекта; принимаются во внимание лишь топологически инвариантные характеристики. При описании внешней формы организмов, их тканевых и органных систем такой топологической характеристикой, определяемой корректно и однозначно, может служить род поверхности (p), который визуализируется посредством простейших канонических поверхностей – шара, тора и различных “кренделей” (рис. ).

Рис. . Перестройки рода поверхности в онтогенезе морского ежа

 

Топологические ручки в биологических объектах обычно реализуются в виде каналов (например, пищеварительная трубка) или сквозных отверстий: мы принимаем любой - покрытый эпителием - сквозной канал или сквозное отверстие в качестве эквивалента топологической ручки. Топологические перестройки у многоклеточных животных осуществляются как «разрезания» и «склеивание» эпителиальных слоев (Преснов, Исаева, 1985, Presnov, Isaeva, 1996; Jockush & Dress, 2003), которые можно представить как as «саморанение» и «самозаживление» (Jockush & Dress, 2003). Топологические перестройки происходят локально, вовлекая дезинтеграцию клеточного пласта, миграцию клеток, вероятно, апоптоз с последующей адгезией, интеграцией клеток и кооперацией цитоскелета, что приводит к формированию вновь формируемого клеточного пласта (см. Kolega, 1986; Исаева, Преснов, 1990); однако локальные топологические перестройки ведут к глобальной тпологической перестройке биологической формы.

Поскольку при используемом подходе внешняя форма биологических объектов моделируется гладкими замкнутыми поверхностями, морфогенез многоклеточных животных может быть представлен как последовательность топологических перестроек их эпителизованных поверхностей. При этом к анализу пространственной организации эпителиальных слоев применяется теорема элементарной топологии, согласно которой любая замкнутая ориентируемая поверхность в трехмерном пространстве гомеоморфна (т.е. топологически эквивалентна) сфере с определенным числом (p) ручек (см. Милнор, Уоллес, 1972; Матвеев, Фоменко, 1991). Сфера с числом (p) ручек дает класс гомеоморфных поверхностей рода p. Если не происходит топологических перестроек (разрезаний и склеек) эпителиальных слоев, род поверхности пре(p) дставляет собой топологический инвариант, и любые геометрические деформации (кривизны поверхности, линейных и угловых размеров) не существенны. Замкнутые поверхности рода p = 0 (сфера), p = 1 (тор, «бублик»), p = 2 (двойной тор, «крендель») и т.д. дают топологическую классификацию. Любой покрытый эпителием сквозной канал или сквозное отверстие биологического объекта рассматривается в качестве эквивалента топологической ручки; преобразуемые друг в друга без топологических перестроек (разрезания и склейки) объекты топологически эквиваленты.

В ходе эмбрионального развития, как и в эволюции, поверхность организма (его эпителиальная «оболочка») претерпевает последовательные топологические перестройки, изменяющие род поверхности. Поверхность яйца и зиготы, поверхность бластулы и ранней гаструлы (рис. ) – поверхности рода 0, тогда как поверхность эмбриона или личинки после завершения гаструляции – поверхность рода 1, тор. У морского ежа, как и других представителей иглокожих, помимо пищеварительной трубки, развивается второй сквозной канал – амбулакральная система. Пространственная организация амбулакральной системы, сообщающейся с внешней средой посредством канала, топологически эквивалентна сквозному каналу; этот гомеоморизм пояснен схемой (рис. ). Таким образом, топологический дизайн морского ежа представлен двойным тором. (p = 2).

Следовательно, в ходе развития происходит изменение рода поверхности, или так называемая сферическая перестройка. Первая топологическая перестройка в ходе развития – переход от слепо заканчивающегося архентерона к сквозной кишечной трубке, который реализуется в ходе гаструляции путем появления дополнительного отверстия помимо бластопора, или первичного рта. Последний становится дефинитивным ротовым отверстием у первичноротых, Protostomia или же анальным отверстием у вторичноротых, Deuterostomia.

Топологические перестройки, изменяющие связность зародышевых листков и приводящие к обособлению дополнительных замкнутых сферических поверхностей от предсуществовавших, осуществляются, например, при энтероцельном формировании мезодермы у Deuterostomia, нейруляции и образовании глаза у Chordata (Maresin & Presnov, 1985; Преснов, Исаева,, 1985; Presnov et al., 1988). Поэтому пространственная организация представителей эволюционно продвинутых животных может быть представлена топологически как наружная эпителиальная оболочка определенного рода p, заключающая в себе некоторое число внутренних замкнутых эпителиальных поверхностей, вложенных внутрь этой оболочки.

Анализ топологических перестроек непрерывной замкнутой эпителиальной «оболочки», покрывающей наружную поверхность организма и сформированной как эктодермой, так и энтодермой, применим и к рассмотрению эволюционных преобразований топологического дизайна многоклеточных животных. При этом важны топологические перестройки, изменяющие род поверхности, поскольку перестройки связности не изменяют топологию наружной поверхности.

Губки характеризуютсячрезвычайной изменчивостью формы, отсутствием четкой индивидуальности и неясными осевыми отношениями, что делает их весьма “неудобными” объектами для сравнительно-морфологических исследований. В то же время эти обстоятельства несущественны для топологического анализа, поэтому при рассмотрении общего плана строения губок именно топологические паттерны могут иметь первостепенное значение. Особенностьтопологической организации губок заключаются в том, что род поверхности p , во-первых, характеризуется очень большим числом, не поддающимся точному исчислению у большинства видов (здесь и далее подобные значения рода поверхности мы будем обозначать как N), во-вторых, в значиительных пределах и случайным образом изменяется в процессе онтогенеза.

Неопределенность и нестабильность числа гомотипных частей, безусловно, является архаичным состоянием, но весь парадокс заключается в том, что у губок в процессе эволюции не происходит стабилизации рода поверхности – наоборот, число рода поверхности N ® ¥ . Начиная с Геккеля, принята схема эволюционного усложнения ирригационной системы губок от аскона к сикону, а затем – к лейкону. У примитивных асконоидных губок число рода поверхности вполне определимо (хотя и нестабильно), и в случае простой однооскулюмной формы равняется числу пор (рис. ..А). Увеличение размеров такого животного не может происходить беспредельно без соответствующих изменений его организации, т.к. это привело бы к увеличению спонгиоцеля и уменьшению гидрокинетической мощности. Поэтому после достижения «критических» размеров асконоидной губки ее топологическая организация начинает изменяться различными способами, которые отражают основные пути эволюции класса Calcarea (Колтун, 1983). В простейших случаях появляется новый оскулюм или происходит продольное разделение индивида на два. Другой путь представляет собой усложнение топологии спонгиоцеля за счет незавершенного бесполого размножения: незавершенное почкование с последующим ветвлением и частичным срастанием выростов (рис. ..В) или многократное разделение спонгиоцеля с формированием решетчатого тела из разветвленных трубок и одного общего оскулюма. Более распространенным оказался путь перехода от аскона к сикону, а затем к лейкону. При этом формируется сложная и неупорядоченная система приводящих и отводящих каналов, что значительно увеличивает род поверхности (рис. ..Б). По своей сути эти усложнения имеют квазифрактальный характер, поскольку отдельные жгутиковые камеры повторяют организацию асконоидной формы. В классе Demospongia уже распространен только лейконоидный тип организации, который в дальнейшем усложняется за счет появления субдермальных полостей. Морфофункциональная организация одиночной лейконоидной губки также претерпевает перестройки, но поскольку ирригационная система достигла предела усложнения, дальнейшие топологические преобразования происходят главным образом за счет децентрализующих процессов – почкования, разделения спонгиоцеля и оскулюма. Значительно реже происходит интеграция нескольких отдельных губок в единое целое, значение рода поверхности которого представляет собой, согласно топологической терминологии, связанную сумму нескольких поверхностей. Среди многоклеточных животных губки – единственная группа, где изменения рода поверхности могут происходить таким способом. Род поверхности у губок напрямую связан с их размерами, поэтому возможны и некоторые упрощения топологической организации вследствии миниатюризации, хотя при этом Demospongia сохраняют лейконоидную ирригационную систему. Преобразования топологии стеклянных губок базируются на совершенно ином уровне тканевой организации – синцитиальном. Сложно устроенный трабекулярный синцитий хиалоспонгий принципиально отличается от ирригационных систем других губок, однако именно синцитиальная организация позволила стеклянным губкам увеличивать размеры тела и род поверхности, сохраняя при этом индивидуальность.

Итак, онтогенетические и эволюционные преобразования губок – прежде всего усложнение рода поверхности, численное значение которого p ® ¥. Пути топологических преобразований могут быть различными, но тот факт, что у губок род поверхности исходно отличен от нуля и его чмсленное значение достаточно велико, несомненно, связан с фильтрующим способом питания. При переходе к иному способу питания сложнейшая топологическая организация губки может полностью исчезнуть. Пример тому – недавно открытая плотоядная кремнероговая губка Asbestopluma sp., лишенная ирригационной системы (Vacelet, Boury-Esnault, 1995). Неопределенное увеличение рода поверхности и отсутствие каких-либо стабильных топологических паттернов, в свою очередь, являются следствием исключительно низкой организации и индивидуальности губок.

Перестройки топологических паттернов книдарий и гребневиков связаны прежде всего с гастро-васкулярной системой. Исходно радиально симметричные животные обладали нулевым родом поверхности. У большинства одиночных полипов род поверхности так и не претерпел каких-либо изменений и p = 0 (рис. ..Г). Лишь иногда могут появляться особые поры (циклиды), отверстия в септах, аборальная пора, система разветвленных гастродермальных каналов. Усложнение рода поверхности у колониальных полипов представляет особый феномен, к рассмотрению которого можно подходить с разных позиций. Если принять точку зрения Марфенина (1993), согласно которой колонию книдарий следует рассматривать как интегральное целое, “многоротый организм”, развивающийся путем бластогенеза, топологические усложнения в ней будут соответствовать формированию нескольких ротовых отверстий у некоторых медуз и планарий.

Среди медуз топологические трансформации имеют большее распространение. Мощное развитие мезоглеи и появление обширных периферических зон, значительно удаленных от ротового отверстия, обусловили формирование системы гастроваскулярных каналов, соединение которых друг с другом и привело к увеличению рода поверхности. Какую бы филогенетическую схему книдарий мы не выберем, следует признать независимое усложнение топологической организации у гидромедуз и сцифомедуз и ее тесную связь с радиальной симметрией. Последнее обстоятельство позволяет утверждать, что при переходе p = 0 ® p = n численное значение рода поверхности изначально не могло быть меньшим четырех. У гидромедуз топологические преобразования, несомненно, начались с момента формирования кольцевого канала и род поверхности у них обычно равен числу радиальных каналов, которых чаще всего четыре (рис. … Е), реже 6, 8, 10, 12, 30 и более (т.е. p = 4n, реже p =6n). У некоторых гидромедуз род поверхности усложняется за счет ветвления радиальных каналов (рис. … Ж), и такое состояние интересно прежде всего тем, что значение p может незначительно варьировать не только у разных особей, но и в разных антимерах, что свидетельствует о некотором «выходе» топологического паттерна из-под абсолютного влияния радиальной симметрии. Отметим появление у некоторых гидромедуз нескольких ротовых отверстий (например, у Gastroblasta) или экскреторных пор на радиальных каналах (у Aequorea), что также увеличивает род поверхности. Эволюционные преобразования гастроваскулярной системы сцифомедуз привели к более значительному увеличению рода поверхности, поскольку у них формируется усложненная система разветвленных и анастомозирующих каналов. В ходе онтогенеза сцифомедуз число ветвей радиальных каналов растет, между ними могут появляться анастомозы (Uchida, 1926), в результате чего род поверхности увеличивается и становится исключительно вариабельным. Так, у молодых Aurelia aurita и A. limbata диаметром менее 10 мм p=32, , в то время как у особей диаметром более 80 мм p варьирует от 150 до 220 (A. aurita) и от 500 до 1400 (A. limbata). При этом происходит неизбежное нарушение радиальной симметрии, поскольку радиальные каналы в разных антимерах начинают различаться по числу анастомозов и точек ветвления (Чернышев, Исаева, 2002). У аурелий основная масса топологических усложнений возникает на периферии зонтика. Крайнее усложнение, "нагромождение" топологических структур наблюдается у корнеротых медуз (рис. … З), у которых на фоне густой сети анастомозирующих каналов (численное значение рода поверхности может превышать 2000) происходит зарастание рта и появляются многочисленные вторичные ротовые поры. Фактически род поверхности большинства сцифомедуз можно выразить как p=4N.

Топологическая организация гребневиков тесно связана с их бирадиальной симметрией. У всех представителей аборальный канал гастроваскулярной системы открывается наружу двумя порами (рис. … И), и это можно рассматривать как первую эволюционно закрепившуюся “попытку” формирования сквозного пищеварительного тракта. У ползающих гребневиков каналы гастральные каналы образуют множественные анастомозы, и значение числа рода поверхности может достигать 200 и более (рис. … К). У плавающих гребневиков множественные анастомозы между ветвями гастральных каналов встречаются редко (например, у некоторых Beroe). Здесь преобладает формирование так называемой перистомальной системы регулярным образом соединяющихся между собой каналов (Осповат, 1985), и род поверхности равен 2n, где n варьирует в узких пределах от 0 (отсутствие анастомозов) до 5 (рис. … Л). Суммарный род поверхности гребневиков может быть отображен как p=2+2n +(N), где N – число анастомозов между ветвями меридиональных каналов (равно 0 или имеет большое значение).

Итак, среди одиночных Radiata индивидуальные топологические преобразования исразвитием топологически усложненных форм наблюдаются главным образом у пелагических стадий и форм за счет систем, распределяющих в организме поток воды, служащий источником питания и кислорода и стоком экскретов. Начальные этапы формирования топологических паттернов происходят в полном соответствии с радиальной организацией, но по мере увеличения рода поверхности в организации гастроваскулярной системы усиливаются элементы диссимметрии вследствие морфологической нерегулярности и вариабельности квазифрактальной структуры радиальных каналов. Все это приводит к возрастанию значения рода поверхности до неопределенно высоких значений, формированию топологически усложненных квазифрактальных систем и возникновению элементов топологического хаоса. Относительно устойчивые топологические паттерны появляются лишь у гребневиков и некоторых гидромедуз.

Не вызывает сомнения, что исходно у низших Bilateria (Triploblastica) род поверхности p = 0 (рис. 2 А). Первое важное топологическое преобразование в эволюции Bilateria – появление сквозной кишечной трубки вместо слепой кишки (рис. 2 Б, З), что обеспечивает прогрессивную дифференциацию отделов пищеварительной системы. В ряду замкнутых поверхностей топологический тип тора - формы со сквозным кишечником оказался устойчивой топологической структурой. Ранее нами было показано, что математической причиной гаструляции и образования сквозного кишечника в онтогенезе может являться топологическая неизбежность неоднородности морфогенетического поля предгаструляционного зародыша (Преснов, Исаева, 1991; Presnov, Isaeva, 1996). Вероятно, те же причины могли привести к формированию сквозного кишечника и в филогенезе. Однако у низших билатеральных животных происходили и другие топологические преобразования пищеварительного тракта, которые, однако, по неясным причинам не получили широкого распространения. Большинство подобных «нетипичных» топологических паттернов можно наблюдать у плоских червей, что вполне укладывается в представление об исходном морфологическом разнообразии этой группы (Мамкаев, 1991). В пределах типа Plathelmintes намечаются три варианта топологических преобразований пищеварительной системы. Первый, наиболее редкий, обусловлен появлением дополнительных ротовых отверстий и глоток (от 2 до 100 у различных Triclada: рис. 2 В) и среди других Bilateria не встречается. Второй вариант – образование единичных (у Triclada и Monogenea) или множественных (у Polyclada)анастомозов между кишечными ветвями (рис. 2 Е, Ж)-аналогичен широко распространенным процессам анастомозирования в гастроваскулярной системе у книдарий и гребневиков. И в том, и в другом случае формируется распластанный в одной плоскости трехмерный топологический паттерн, который имеет определенное или неопределенно большое значение рода поверхности. У других Bilateria анастомозы в пищеварительной системе встречаются крайне редко (например, у некоторых пиявок). Интересно отметить, что у пресноводных планарий, не имеющих в норме анастомозов, ветви кишечника начинают анастомозировать после механических повреждений (Исаева, неопубликованные данные). Наиболее перспективным в эволюционном плане оказалось образование анальных пор, которые появлялись в разных отрядах независимо. Число анальных пор у некоторых турбеллярий отряда Polyclada может быть очень большим и нестабильным (рис. 2 Г). Однако в рамках билатеральной организации получает распространение простейший топологический паттерн пищеварительной системы - с одним ротовым и одним анальным отверстием. Сквозной кишечник обладает чрезвычайной консервативностью в топологическом аспекте и новые топологические паттерны Bilateria обычно возникают на базе других систем - целомической, дыхательной и половой. Тем не менее в отдельных группах могут встречаться топологические усложнения переднего отдела пищеварительного тракта. Так, у гастротрих из отряда Macrodasyida и некоторых пиявок имеется пара боковых каналов, соединяющих пищеварительную систему с окружающей средой т.е. значение рода поверхности p = 3 (рис. 2 И). Значительно более разнообразны сходные топологические паттерны у вторичноротых: в переднем отделе пищеварительной системы полухордовых и низших хордовых имеются парные жаберные щели, и род поверхности p = 1+2n (у крыложаберных и большинства хордовых) или p= 1+2N (у многих кишечнодышащих и асцидий) (рис. 2 К). У асцидий, ведущих прикрепленный фильтрующий образ жизни, род поверхности может быть неопределенно велик (до нескольких тысяч), а число щелей в глотке варьирует даже у разных особей одной колонии, т.е. наблюдаются элементы топологического хаоса (рис. 2 Л). Напротив, у активных хордовых происходит уменьшение и стабилизация числа жаберных щелей и, соответственно, рода поверхности. Так, у аппендикулярий имеется лишь одна пара глоточных отверстий, т.е. p=3 (рис. 2 И). Особенно значимую роль данный топологический паттерн сыграл в эволюции позвоночных, поскольку на его основе сформировался примитивный висцеральный скелет, состоящий из опорных элементов межжаберных перегородок.

Последующая эволюция приводит к возникновению сквозных каналов целомической и дыхательной систем. Топологическая эволюция наружной поверхности тела многоклеточных животных увеличивает поверхность раздела между организмом и его окружением, что дает лучшую утилизацию вещества и энергии из внешней среды, текущей сквозь организм животного и обеспечивает лучшую адаптацию организма к его окружению.

 

Разнообразные топологические паттерны, связанных с поступлением и выведением воды из организма, возникают у моллюсков: воронка головоногих, трубковидная мантия и раковина лопатоногих, сифоны брюхоногих и двустворчатых. У последних в процессе эволюции происходило не только срастание краев мантии с образованием сифонов и отверстия для ноги (общее их число обычно 2-3, реже 4), но и формирование пластинчатых жабр с многочисленными отверстиями. По сути, Bivalvia - это еще одна группа животных, у которых значение рода поверхности p= 1+2N, N® ¥ . Интересно, что у двустворок, как и у асцидий, это связано с переходом к пассивно образу жизни и сопровождается формированием фильтрующей квазифрактальной системы. Однако не следует рассматривать дезинтеграционные процессы как неизбежный толчок к топологическим преобразованиям. В некоторых группах переход к пассивному образу жизни и редукция головного конца не сопровождались перестройками рода поверхности (например, камптозои, форониды и мшанки).

Анастомозирование эпителизованных каналов, формирующее усложненные топологические паттерны, не получили среди Bilateria большого распространения. Подобные топологические усложнения развиваются на базе тех систем, которые функционально тесно связаны с внешней средой и фактически распределяют ее в организме, увеличивая площадь поверхности раздела наружной среды и внутренней среды организма. К таким системам относятся полиева система сипункулид, амбулакральная система иглокожих, трахеи наземных членистоногих и дыхательная система птиц. Род поверхности иглокожих можно выразить как p= 1+n, где n - род поверхности амбулакральной системы (обычно равен 1, реже доходит до 5). Возможные эволюционные преобразования рода поверхности иглокожих достаточно сложны и рассмотрены в отдельной работе (Presnov, Isaeva, 1996). Данные об анастомозах в целомической системе сипункулид ограничиваются лишь тем, что, они, в отличие от иглокожих, многочисленны и неупорядоченны. Значительно больше сведений о морфологии трахейной системы членистоногих. Обще признано, что в процессе эволюции исходно обособленные и не ветвящиеся трахеи в разных группах членистоногих формируют сложную дыхательную систему с анастомозирующими трахеомерами. Появление анастомозов между трахеями происходило независимо у паукообразных и неполноусых и, безусловно, является общей закономерностью эволюции трахейной системы. В многочисленных работах по анатомии насекомых обычно изображают анастомозы между основными трахейными стволами, в расположении которых прослеживается отчетливая билатеральная симметрия и метамерная упорядоченность. В то же время практически ничего неизвестно о числе и расположении анастомозов мелких трахей и трахеол, но теоретически можно предполагать присутствие у членистоногих элементов топологического хаоса, который неизменно сопровождает квазифрактальные анастомозирующие системы. Проведенные нами предварительные исследования трахейной системы личинок поденок позволяют утверждать, что в расположении анастомозов мелких трахей не наблюдается какой-либо билатеральной и метамерной упорядоченности. Проводя параллели между трахеями членистоногих и легкими позвоночных с удивлением приходится констатировать, что у последних, несмотря на квазифрактальное устройство бронхов, анастомозирование не является такой же топологической неизбежностью и нашло распространение лишь у птиц. Также, как и в трахейной системе насекомых, несомненно наличие элементов топологического хаоса в анастомозировании бронхиол и воздушных капилляров в легких птиц. Род поверхности для этих двух групп правильнее определить как p= 1+2N.

Увеличения рода поверхности имеют широкое распространение среди Mеtazoa. Этот вывод не является тривиальным, если принять во внимание не вполне объяснимый “запрет” на увеличение рода поверхности у протозой и растений. Предложенная первоначально общая схема эволюции рода поверхности многоклеточных (Преснов, Исаева, 1985; Presnov, Isaeva, 1996) в дальнейшем была существенно дополнена (Чернышев и др., 2001).

Переход p=0 ® p=n (или N) фактически сводится к трем основным вариантам: 1) N неопределенно большое (губки, некоторые турбеллярии и колониальные книдарии); 2) n кратно 2 или 4 и имеет конкретную величину, соответствующую типу исходной радиальной симметрии (двулучевой у гребнивиков и, вероятно, четырехлучевой у книдарий); 3) n равно 1 (Bilateria). Поэтому можно установить следующую закономерность: чем ниже уровень организации, тем чаще при переходе p=0 ® p=n число возникших ручек много больше единицы. Дальнейшие преобразования p=n ® p=n´, направлены в сторону увеличения рода поверхности (n< n´), значительно реже происходит полная утрата ручек (n´=0 при редукции кольцевого канала у некоторых медуз, анального отверстия или даже кишечного тракта у некоторых Bilateria). Усложненные топологические паттерны можно условно разделить на две группы - упорядоченные и неупорядоченные. Формы с упорядоченными топологическими паттернами имеют исчислимый и стабильный род поверхности, а также невысокую плотность топологического рода, которая тем меньше, чем больше объем тела. К таким формам относится большинство Bilateria, а также многие гидромедузы и гребневики. Формы с неупорядоченными топологическими паттернами имеют большой, нестабильный и часто трудноисчислимый род поверхности, а также высокую плотность топологического рода, которая в процессе увеличения объема тела мало изменяется или увеличивается. Полностью неупорядоченные паттерны свойственны лишь губкам. У сцифомедуз, некоторых гребневиков, турбеллярий и асцидий. на определенных этапах развития наблюдается более или менее отчетливая топологическая упорядоченность, которая в дальнейшем нарушается. Нарушения исходной топологической упорядоченности, несомненно, присущи дыхательным системам насекомых и птиц, хотя, как уже говорилось выше, о масштабах этих нарушений известно очень немного. Особо следует отметить, что топологическая неупорядоченность всегда развивается на основе фрактало-подобных систем. В недавней (и пока единственной) публикации о механизмах контроля ветвления трахеол дрозофилы и бронхиального древа млекопитающих (Metzger, Krasnov, 1999) рассматривается замечательный генетический алгоритм ветвления - включение и выключение гена (генов), контролирующих каждый последовательный шаг ветвления; однако в этой же работе констатируется отсутствие жесткого контроля ветвления и жесткого морфологического паттерна терминальных ветвей дыхательной системы. Из этого заключения логично вытекает вывод об отсутствии жесткого топологического паттерна в образовании анастомозов в терминальных отделах дыхательной системы насекомых и птиц (у млекопитающих в норме бронхи не образуют анастомозы). Мы предполагаем, что хаотическая динамика процессов морфогенеза, проявляющаяся у высших животных в хаотизации конечных этапов ветвления и анастомозирования квазифрактальных структур, еще более выражена у низших многоклеточных. Именно этим можно объяснить широкое распространение неупорядоченных топологических паттернов среди губок, книдарий, гребневиков и плоских червей.

 

Подписи к рисункам.

Рис. (1). Изменения рода поверхности у губок (А-В), книдарий (Г-З) и гребневиков (И-Л); рядом изображены простые поверхности с соответствующим родом поверхности (p).

Рис.(2). Изменение рода поверхности различных Bilateria за счет преобразований пищеварительной системы. А-Ж - плоские черви, З - наиболее распространенный сквозной пищеварительный тракт, И-Л - полухордовые и низшие хордовые.

У большинства Bilateria формируется стабильный топологический паттерн со сквозной пищеварительной трубкой, и у представителей большинства типов этих животных отсутствуют какие-либо иные сквозные каналы, помимо пищеварительного, т.е. их наружная поверхность гомеоморфна тору (рис )

У низших Bilateria род поверхности p = 0. Дальнейшие преобразования привели к появлению сквозного кишечника с родом поверхности p = 1. Тип тора - формы со сквозным кишечником - оказался устойчивой топологической структурой. Новые топологические паттерны Bilateria обычно возникают на базе других систем - целомической, дыхательной и половой (Преснов, Исаева, 1985; Исаева, Преснов, 1990; Чернышев и др., 2001). Тем не менее в отдельных группах могут встречаться топологические усложнения переднего отдела пищеварительного тракта. У асцидий, ведущих прикрепленный фильтрующий образ жизни, род поверхности может быть неопределенно велик (до нескольких тысяч), а число щелей в глотке варьирует даже у разных особей одной колонии, т.е. наблюдаются элементы топологического хаоса. Напротив, у активных хордовых происходит уменьшение и стабилизация числа жаберных щелей и, соответственно, рода поверхности.

Общая схема эволюции рода поверхности многоклеточных представлена на рис. 38.

Рис. Схема эволюционных преобразований поверхности организма многоклеточных животных (Исаева, Преснов, 2004)

Топологические усложнения развиваются на базе систем, функционально тесно связанных с внешней средой и фактически распределяющих ее в организме с увеличением площади поверхности раздела наружной среды и внутренней среды организма. К таким системам относятся, например, амбулакральная система иглокожих и трахейная система наземных членистоногих. Род поверхности иглокожих можно выразить как p = 1 + n, где n - род поверхности амбулакральной системы (обычно равен 1, реже доходит до 5).

Усложненные топологические паттерны можно условно разделить на две группы - упорядоченные и неупорядоченные. Формы с упорядоченными топологическими паттернами имеют стабильный род поверхности. К таким формам относится большинство Bilateria, а также многие гидромедузы и гребневики. Формы с неупорядоченными топологическими паттернами имеют большой, нестабильный и неопределенный род поверхности. Полностью неупорядоченные паттерны свойственны лишь губкам. Топологическая неупорядоченность всегда развивается на основе фракталоподобных систем эпителиальных каналов. Хаотическая динамика процессов морфогенеза, проявляющаяся у высших животных в хаотизации лишь конечных этапов морфогенеза квазифрактальных структур, более выражена у низших многоклеточных.

Топологическая обусловленность увеличения рода поверхности у многоклеточных животных, возможно, заключается в неизбежности существование особенностей векторного поля на поверхности зародыша или многоклеточного сферического (с топологической точки зрения) организма (Преснов, Исаева, 1990, 1991). Эти особенности векторного поля на сфере – сингулярные точки – могут определять локализацию впячивания (инвагинации) поверхности организма. Во время встречи сопряженных точек происходит взаимное уничтожение топологического «заряда» (топологического индекса) и изменение топологии поверхности. Таким образом, изменение рода поверхности является следствием неизбежной неоднородности векторного морфогенетического поля сферической поверхности организма, что открывает реальные возможности для более строгого топологического анализа этого процесса.

 

Заключение

 

Биологические морфопроцессы детерминируются и регулируются совместным действием многих факторов. «Приписывать, как это обычно делается, каждое возможное взаимодействие определенному гену – значит лишь отодвигать проблему назад: поскольку фенотипическое выражение генов группы k будет регулироваться генами группы (k + 1), можно попасть в порочный круг: “Quis custodiet ipsos custodies?” [Кто будет охранять самих стражников?]» (Р. Том, 1970, с. 42). Наиболее адекватным подходом кажется синергетический – исследование нелинейной динамики самосогласованных процессов пространственно-временного структурирования; соотношений ближнего и дальнего порядков, локальных и глобальных аспектов, части и целого. Исследования самоорганизации, самосборки – междисциплинарный объект изучения, интегрирующий физиков, химиков, биологов и математиков.

Наиболее адекватным подходом кажется синергетический – исследование нелинейной динамики самосогласованных процессов пространственно-временного структурирования; соотношений ближнего и дальнего порядков, локальных и глобальных аспектов, части и целого. Исследования самоорганизации, самосборки – междисциплинарный объект изучения, интегрирующий физиков, химиков, биологов и математиков.

Биологическаий морфонкез можно рассматривать как процесс самоорганизации – процесс, в ходе которого глобальный паттерн системы порождается многочисленнымии локальными взаимодействиями элементов низших уровней (Parriss & Edelstein-Keshet, 1999; Camazine et al., 2001). Разумеется, биологическая самоорганизация направляется и закрепляется естесчтвенным отбором.

В биологическом морфогенезе проявлется и физическая оптимизация, минимизация энергетической стоимости морфофункциональной организации биологических структур, в частности фракталоподобных (Damiani, 1994). It is supposed that some biological forms, as the branching structures, are the most functional design. These forms “are topological attractors that evolution cannot avoid”(Thomas & Reif, 1993). Just as branching structures, torus and multiple toroids can be considered as topological attractors in biological morphogenesis.

Stadler et al. (2001) considering genotype-phenotype mapping proposed to include the topological structure of phenotypic space to give the topological explanation of evolutionary transitions as “the topology of possible”. Analogously the topological interpretation of major evolutionary transitions and morphological innovations one can give for transformations of body design in metazoan evolution.

Jockush & Dress (2003) proposed that body plans are physical realization of topological program, governed by rather few general principles, and a formal analysis of the emergence of complexity during the process of development using the tools of topology and differential geometry should advance our understanding of biological morphogenesis.

Studies of DNA topology and its biological effects have shown the power of the topological method and became the field of biochemical topology (see Crick, 1976; Wasserman et al., 1985; Wasserman & Cozzarelli, 1986). Accordingly the topological analysis of metazoan body plans can be called morphological topology (or topological morphology).

Therefore, the topological organization of the physical space, in which the development of living organisms takes place, can explain some phenomena of biological morphogenesis.

Для более ясного понимания биологических явлений необходим выход за рамки, очерченные подходом узкого специалиста, в практически безграничную область исследования природных структур и процессов, становящейся единым полем исследований представителями разных наук вслед за грандиозным научным прорывом, осуществленным Р. Томом, Г. Хакеном, И. Пригожиным, Б. Мандельбротом, интегрирует

Наконец, исследователей привлекает эстетика фракталов, диссипативных структур, игр хаоса – этих странных аттракторов.

– Конец работы –

Эта тема принадлежит разделу:

ФРАКТАЛЫ И ХАОС В БИОЛОГИЧЕСКОМ МОРФОГЕНЕЗЕ

В В Исаева Ю А Каретин...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Топологический дизайн Metazoa

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Исследования фракталов в биологии
Фрактальная самоорганизация клеток Фрактальный хаос в организации нейронов Фракталы и хаос в организме Фракталы и хаос в морфологии гастроваскулярной системы иедузы Aurel

Фрактальная геометрия
Фрактальная геометрия обязана своим возникновением (в современном виде) Б. Мандельброту и развитию компьютерной техники. Бенуа Мандельброт (Benoit Mandelbrot, во французском произношении – Б. Манде

Динамический (детерминированный) хаос
  В классической равновесной термодинамике мерой хаоса служила энтропия. Понятие энтропии введено Клаузиусом. Цитируем два первых закона термодинамики в формулировке Р. Клаузиуса (R.

Хаотические фракталы природы
Структура идеального компьютерного фрактала сохраняется при любых масштабах ее рассмотрения. Чтобы получить такой фрактал, итерации должны продолжаться бесконечно долго: если полученное множество у

Теория самоорганизации
Сценариям перехода от порядка к хаосу противостоит сценарий противоположной направленности - возникновение порядка из хаоса, самоорганизация. Возникновение диссипативных структур как перех

Биологическая самоорганизация и моделирование в биологии
В среде биологов господствует редукционизм, в основе которого лежат представления об однозначной детерминированности причинно-следственных связей. Такой подход назван Л.В. Белоусовым (2001)

Исследования фракталов в биологии
Фрактальная геометрия дала возможность сжатого математического описания биологических структур и процессов, недоступных для описания языком геометрии Эвклида. «Ученые (я уверен) бу

Фрактальный хаос в организации нейронов
  Нами рассмотрена квазифрактальная организация нейронов рыб, ранее в таком аспекте не исследованных. Определение значения фрактальной размерности применено для количественной характе

Фракталы и хаос в организме
  Попытаемся рассмотреть проявления хаоса в морфологической организации некоторых квазифрактальных структур многоклеточных животных. Многие биологи весьма скептически относятся к утве

Фракталы и хаос в ветвления каналов гастроваскулярной системы иедузы Aurelia aurita
Реальная возможность оценки степени хаотичности некоторых систем возможна в сравнении их частей в пределах одного организма: у радиально симметричных - в разных антимерах, у билатерально симметричн

Формирование хаотических паттернов в онтогенезе медузы Aurelia.
Неоднократно была отмечена вариабельность морфологической организации А. aurita с нарушениями тетрарадиальной симметрии: отклонением от нормы числа ропалиев, изменением числа перрадиальных и

Подписи к рисункам
Рис. 1. Паттерн каналов гастроваскулярной системы метаэфиры (а) и ранней медузы Aurelia aurita (б, в); стрелкой указан отросток кольцевого канала. Длина масштабной линии 250 мкм. Ри

Хаотические фракталы жаберной трахейной системы личинок поденок
  Богатый материал для анализа изменчивости фрактальных структур в пределах одного организма можно получить, изучая так называемые трахейные жабры (тергалии) личинок поденок - как изв

Хаос и фракталы в эволюции Metazoa
Любой организм, орган или клеточный ансамбль обладают квазифрактальными свойствами, которые, однако, могут быть выражены в большей или меньшей степени. В одних живых системах хаотичные паттерны наг

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги