рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Динамический (детерминированный) хаос

Динамический (детерминированный) хаос - раздел Науковедение, ФРАКТАЛЫ И ХАОС В БИОЛОГИЧЕСКОМ МОРФОГЕНЕЗЕ   В Классической Равновесной Термодинамике Мерой Хаоса Служила ...

 

В классической равновесной термодинамике мерой хаоса служила энтропия. Понятие энтропии введено Клаузиусом. Цитируем два первых закона термодинамики в формулировке Р. Клаузиуса (R. Clausius, 1865; по: Пригожин, Стенгерс, 1986):

Die Energie der Welt ist konstant (Энергия мира постоянна);

Die Entropie der Welt strebt einem Maximum zu (Энтропия мира стремится к максимуму).

Изолированные системы вследствие линейных термодинамических процессов эволюционируют к стационарному состоянию максимальной энтропии и неупорядоченности. Второй закон термодинамики описывает мир как непрерывно деградирующий, сползающий от порядка к молекулярному хаосу и тепловой смерти.

В последние десятилетия XX века возникло новое понимание хаоса. Динамический, или детерминированный хаос нелинейных динамических систем – это не хаос, прежде обычно понимаемый как полная дезорганизация и случайность событий; современные представления о хаосе в большей мере, но, разумеется, не вполне соответствуют исходным древнегреческим: «хаос» как беспредельная неупорядоченная масса, из которой возникло все существующее.

Динамический (детерминированный) хаос – сложное непредсказуемое поведение детерминированной нелинейной системы. Оказалось, что простые системы (иногда - вызывающе простые модельные системы), состоящие из малого числа компонентов и детерминированные правилами, не включающими элементов случайности, могут проявлять случайное поведение, достаточно сложное и непредсказуемое, причем случайность носит принципиальный, неустранимый характер. Такого рода случайность, непредсказуемость развития системы понимается как хаос.

Детерминированный хаос сочетает детерминированность и случайность, ограниченную предсказуемость и непредсказуемость и проявляется в столь разных явлениях как кинетика химических реакций, турбулентность жидкости и газа, геофизические, в частности, погодные изменения, физиологические реакции организма, динамика популяций, эпидемии, социальные явления (например, курс акций).

Прежде разделяли детерминированные системы, для которых был возможен прогноз на любой отрезок времени (подобно прогнозу затмений солнца) и стохастические системы, которые можно охарактеризовать лишь статистически. Теперь же появился новый класс объектов, формально детерминированных, но с поведением, прогнозируемым лишь на ограниченный отрезок времени. Оба полюса – порядок и хаос – не существуют в чистом виде, если понимать упорядоченные системы как полностью регулярные, детерминированные, предсказуемые, а неупорядоченные системы как совершенно нерегулярные, случайные, непредсказуемые. Примером систем с высокой степенью порядка и стабильности служат кристаллы; на противоположном полюсе располагается такие хаотические системы как газы.

Можно напомнить, что основы однозначного детерминизма в квантовой механике были подорваны принципом неопределенности В. Гейзенберга, устанавливающим невозможность измерения с заданной точностью одновременно координаты и импульса элементарной частицы. Идеология детерминизиа выражена А. Эйнщтнйном в форме известного вычказывания:«Я не верю, что господь Бог бросает кости» (в несколько иной формулировке: «Бог мечет жребий, а не кости» - “God casts the die, not the dice”). Н. Бор ответил ответил на это: «Не наша печаль – предписывать господу Богу, как ему следовало бы управлять этим миром». Ответом и вызовом однозначному детерминизму послужила и появившаяся к концу века книга И. Стьюарта “Does God play dice?” (Stewart, 1992), излагающая теорию катастроф. Здесь кажется уместным привести и остроумное замечание И. Пригожина: если было бы возможно, зная состояние Вселенной в один произвольно выбранный миг, вычислить ее прошлое и будущее, как для простой предсказуемой системы, мир оказался бы грандиозной тавтологией (Пригожин, Стенгерс, 1986, с.126).

Теория динамического хаоса уничтожила разрыв между классической динамикой и статистической физикой: регулярное движение становится стохастическим вследствие всегда присутствующих небольших флуктуаций. Развитие теории динамического хаоса связано с именами А. Пуанкаре (H. Poincare), А.М. Ляпунова, А.А. Андронова, Э. Хопфа (E. Hopf), А.Н. Колмогорова, В.И. Арнольда.

Эволюция системы математически описывается векторным полем в фазовом пространстве – абстрактном пространстве динамических переменных системы, векторном поле в координатах переменных. Точка фазового пространства задает состояние системы, вектор в этой точке указывает направление изменения системы. Кривые последовательных состояний процесса, создаваемые изменением положения точки в фазовом пространстве, называются фазовыми траекториями, а их совокупность – фазовым портретом системы. Траектории поля, притягивающиеся к одному из центров притяжения, образуют область, называемую областью действия (бассейном) этого центра притяжения (Р. Том, 1968). Фазовое пространство – удобное средство для наглядного представления поведения динамической системы. На рис. показаны фазовые портреты (нижний ряд) для системы с затухающими колебаниями (траектория, стремящаяся к положению равновесия), с постоянными колебаниями (замкнутая кривая) и более сложный случай системы, колеблющейся в лишенном строгой периодичности режиме. Установившиеся режимы движения, иными словами, множество точек (в простейшем случае – одна точка) в фазовом пространстве системы, к которым стремятся ее траектории, получили название аттракторов - они как бы привлекают, притягивают траектории в фазовом пространстве. В первом случае аттрактором оказывается неподвижная точка, во втором – предельный цикл, в третьем же – так называемый странный, или хаотический (стохастический) аттрактор (рис. 7, слева направо). Таким образом, аттракторы – геометрические образыё, характеризующие поведение системы в фазовом пространстве после достаточно длительного периода времени. Хаотические, странные аттракторы соответствуют непредсказуемому поведению систем, не имеющих строго периодической динамики, это математический образ детерминированных непериодических процессов. Еомпьютерная визуализация странных аттракторов выявляет их структурированность, сложность и необычность конфигураций в трехмерном пространстве.

Рис. . Последовательность изменений во времени (верхний ряд)

и фазовые портреты (нижний ряд) для трех различных систем

(Глейк, 2001)

Хотя возможность существования странных аттракторов была уже установлена работами некоторых математиков, впервые построение странного аттрактора (рис. 8) как решение системы дифференциальных уравнений осуществил в работе по компьютерному моделированию термоконвекции и турбулентности в атмосфере американский метеоролог Э. Лоренц (E. Lorentz, 1963). Конечное состояние системы Лоренца чрезвычайно чувствительно к начальному состоянию. Сам же термин «странный аттрактор» появился позже, в работе Д. Рюэлля и Ф. Такенса в (D. Ruelle, F. Takens, 1971: см. Рюэль, 2001) о природе турбуленции в жидкости, В этой работе авторы отмечали, что размерность странного аттрактора отлична от обычной, или топологической. Позже Б. Мандельброт (B. Mandelbrot) отождествил странные аттракторы, траектории которых при последовательных вычислениях компьютера бесконечно расслаиваются, расщепляются, с фракталами.

Рис. . Аттрактор Лоренца (Кроновер, 2000)

Ограниченная предсказуемость положения точки в фазовом пространстве странного аттрактора иллюстрирована рис., изображающим траектории точек и их положение с течением времени в системе аттрактора Лоренца (Кратчфилд и др., 1987). 10 000 «меченых» точек сначала движутся по близким траекториям, но с течением времени их траектории расходятся по двум ветвям аттрактора и настолько «размазываются» по всему аттрактору, что точное предсказание положения какой-либо отдельной точки в данный момент времени в этой системе становится невозможным -возможно лишь статистическое предсказание в пределах системы аттрактора.

Рис. . Расхождение траекторий отдельных точек

в системе аттрактора Лоренца (Кратчфилд и др., 1987)

Это иллюстрация динамического хаоса в данной системе с ограниченной предсказуемостью и принципиальной невозможностью точного прогноза ввиду случайности выбора траектории движения каждой точки по одной из двух ветвей аттрактора. Расхождение соседних траекторий приводит к неопределенности положения точки через некоторое время, создавая «облако неопределенности». Поведение системы предсказуемо на малом отрезке времени и непредсказуемо на достаточно большом отрезке - система начинает вести себя как хаотическая, для которой возможно лишь статистическое описание.

Таким образом, системы, поведение которых детерминируется правилами, не включающими случайность, с течением времени проявляют непредсказуемость за счет нарастания, усиления, амплификации малых неопределенностей, флуктуаций. Наглядный образ системы с нарастанием неопределенности – так называемый биллиард Я.Г. Синая: достаточно большая последовательность соударений шаров неизбежно ведет к нарастанию малых отклонений от исчисляемых траекторий (за счет не идеально сферической поверхности реальных шаров, не идеально однородной поверхности сукна) и непредсказуемости поведения системы.

В таких системах «случайность создается подобно тому, как перемешивается тесто или тасуется колода карт» (Кратчфилд и др., 1987). Так называемое «преобразование пекаря» с последовательным растягиванием и складыванием, бесконечным образованием складок – одна из моделей возникновения перехода от порядка к хаосу; при этом число преобразований может служить мерой хаоса.

Еще одна экспериментальная модель для изучения перехода к хаосу в потоке жидкости – два вращающихся в противоположных направлениях эксцентрических цилиндра (Оттино, 1989). С увеличением скорости вращения внутреннего цилиндра наблюдается переход от постоянной скорости к периодически изменяющейся, и затем - к апериодическому режиму. Небольшой разброс начальных значений, характеризующих положение окрашенных капель в вязкой жидкости, быстро растет на хаотических участках потока. Подобный застывший, структурный хаос можно наблюдать в причудливых рисунках светлых и темных слоев изверженных горных пород.

Переход от упорядоченного ламинарного течения к турбулентному, хаотическому движению наблюдается в жидкости с увеличением числа Рейнолдса, характеризующего соотношение сил инерции и вязкости. Потеря устойчивости состояний равновесия имеет множество приложений в самых различных областях: «механические, физические, химические, биологические и экономические системы теряют устойчивость на каждом шагу» (Арнольд, 1990, с. 27). Для таких систем принципиально невозможен долгосрочный прогноз.

Возможность предсказаний – одна из основных целей науки. До появления работы Э. Лоренца полагали, что сбор и обработка достаточно большого объема информации обеспечит точность долгосрочного прогнозирования погоды. Теперь представление об однозначной детерминированности сменилось пониманием принципиальной непредсказуемости поведения многих систем на достаточно большом отрезке времени, выяснились ограничения прогностических моделей, предсказуемая непредсказуемость динамики поведения сложных систем: предсказание границ, но не положения точки в их пределах.

Итак, нелинейные детерминированные системы, состоящие из немногих простых компонентов, могут вести себя неупорядоченно, хаотически.

Хаотические системы чувствительны к малым воздействиям, как начальным, так и во всех точках движения. В хаотическом мире трудно предсказать, какие вариации возникнут в данное время и в данном месте, ошибки и неопределенность нарастают экспоненциально с течением времени. Э. Лоренц назвал это явление эффектом бабочки: бабочка, взмахивающая крыльями в Айове, может вызвать лавину эффектов, которые могут достигнуть высшей точки в дождливый сезон в Индонезии («эффект бабочки» вызывает и ассоциацию с сюжетом рассказа Р. Бредбери «И грянул гром»: гибель бабочки в далеком прошлом изменяет мир будущего). «Небольшие различия в начальных условиях рождают огромные различия в конечном явлении... Предсказание становится невозможным» (А. Пуанкаре, по: Хорган, 2001). В соответствии с идеями эмерджентности и холизма, неожиданно возникающие свойства и поведение системы не могут быть поняты путем исследования ее частей.

Могут наблюдаться сложные, длительные хаотичные переходные режимы, скрытый порядок которых невозможно выявить без знания его алгоритма. Возможность существования «ложного» хаоса иллюстрируется (рис. ) «возвращением Пуанкаре» (название такого рода явлений в статистической физике - у Пуанкаре есть теорема о возврате): изображение, переведенное в цифровую форму, растягивается по диагонали, выходящие за пределы рамки участки отрезаются и вставляются вновь; после определенного числа таких преобразований распознаваемое изображение исчезает, а затем вновь возникает из видимого хаоса.

Рис. . «Возвращение Пуанкаре» (Кратчфилд и др., 1987)

Анализ механизмов перехода от порядка к хаосу в реальных системах и различных моделях выявил универсальность относительно немногих сценариев перехода к хаосу. Переход к хаосу может быть представлен в виде диаграммы бифуркаций (термин "бифуркация" употребляется для обозначения качественных перестроек системы c возникновением нового режима ее поведения: см. ниже). Вхождение системы в непредсказуемый режим описывается каскадом бифуркаций, следующих одна за другой (рис. ).Каскад бифуркаций ведет последовательно к появлению выбора между двумя решениями, затем четырьмя и т.д.; система начинает колебаться в хаотическом, турбулентном режиме последовательного удвоения возможных значений.

Простой путь перехода к хаосу как каскад бифуркаций – последовательность Фейгенбаума, или сценарий удвоения периода (рис.). М. Фейгенбаум (M. Feigenbaum) выявил закономерность, определяющую поведение разнообразных нелинейных систем с последовательными бифуркациями удвоения периода: до определенного порога значений параметров система имеет периодический режим с периодом T, который удваивается при переходе через порог (период становится равным 2 T), затем при переходе через следующий порог снова удваивается, становится равным 4 T, и т.д. Последовательность значений параметра, соответствующих последовательных удвоениям, асимптотически ведет себя как геометрическая прогрессия со значением знаменателя 1/ 4,669...

Рис. 6. Сценарий удвоения периода; на вставке показана выделенная часть (Пайтген, Рихтер, 1993)

Последовательность Фейгенбаума – один из типичных сценариев перехода от порядка к хаосу, от простого периодического режима к сложному апериодическому при бесконечном удвоении периода. Последовательность Фейгенбаума имеет самоподобную, фрактальную структуру – увеличение какой-либо области выявляет подобие выделенного участка всей структуре (рис. 6). Преобразования, происходящие при развертывании множества Мандельброта, точно так же можно представить в виде каскада бифуркаций (рис. 6), с последовательным удвоением числа решений и нарастанием неопределенности - невозможности точного прогнозирования положения отдельной точки. Поэтому множество Мандельброта – визуализация образа детерминированного хаоса.

Каскад следующих одна за другой бифуркаций существенно изменяет систему. Вероятность обратного хода событий крайне низка, эволюция системы становится необратимой. Необратимость, однонаправленность процессов эволюции и онтогенеза хорошо известна биологам. Необратимые процессы в открытых системах порождают высокие уровни организации, например, диссипативные структуры. Возникает новая интерпретация второго закона термодинамики: энтропия – не просто безостановочное соскальзывание к однородному состоянию, лишенному организации; энтропия может порождать порядок (Пригожин, Стенгерс, 1986).

 

– Конец работы –

Эта тема принадлежит разделу:

ФРАКТАЛЫ И ХАОС В БИОЛОГИЧЕСКОМ МОРФОГЕНЕЗЕ

В В Исаева Ю А Каретин...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Динамический (детерминированный) хаос

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Исследования фракталов в биологии
Фрактальная самоорганизация клеток Фрактальный хаос в организации нейронов Фракталы и хаос в организме Фракталы и хаос в морфологии гастроваскулярной системы иедузы Aurel

Фрактальная геометрия
Фрактальная геометрия обязана своим возникновением (в современном виде) Б. Мандельброту и развитию компьютерной техники. Бенуа Мандельброт (Benoit Mandelbrot, во французском произношении – Б. Манде

Хаотические фракталы природы
Структура идеального компьютерного фрактала сохраняется при любых масштабах ее рассмотрения. Чтобы получить такой фрактал, итерации должны продолжаться бесконечно долго: если полученное множество у

Теория самоорганизации
Сценариям перехода от порядка к хаосу противостоит сценарий противоположной направленности - возникновение порядка из хаоса, самоорганизация. Возникновение диссипативных структур как перех

Биологическая самоорганизация и моделирование в биологии
В среде биологов господствует редукционизм, в основе которого лежат представления об однозначной детерминированности причинно-следственных связей. Такой подход назван Л.В. Белоусовым (2001)

Исследования фракталов в биологии
Фрактальная геометрия дала возможность сжатого математического описания биологических структур и процессов, недоступных для описания языком геометрии Эвклида. «Ученые (я уверен) бу

Фрактальный хаос в организации нейронов
  Нами рассмотрена квазифрактальная организация нейронов рыб, ранее в таком аспекте не исследованных. Определение значения фрактальной размерности применено для количественной характе

Фракталы и хаос в организме
  Попытаемся рассмотреть проявления хаоса в морфологической организации некоторых квазифрактальных структур многоклеточных животных. Многие биологи весьма скептически относятся к утве

Фракталы и хаос в ветвления каналов гастроваскулярной системы иедузы Aurelia aurita
Реальная возможность оценки степени хаотичности некоторых систем возможна в сравнении их частей в пределах одного организма: у радиально симметричных - в разных антимерах, у билатерально симметричн

Формирование хаотических паттернов в онтогенезе медузы Aurelia.
Неоднократно была отмечена вариабельность морфологической организации А. aurita с нарушениями тетрарадиальной симметрии: отклонением от нормы числа ропалиев, изменением числа перрадиальных и

Подписи к рисункам
Рис. 1. Паттерн каналов гастроваскулярной системы метаэфиры (а) и ранней медузы Aurelia aurita (б, в); стрелкой указан отросток кольцевого канала. Длина масштабной линии 250 мкм. Ри

Хаотические фракталы жаберной трахейной системы личинок поденок
  Богатый материал для анализа изменчивости фрактальных структур в пределах одного организма можно получить, изучая так называемые трахейные жабры (тергалии) личинок поденок - как изв

Хаос и фракталы в эволюции Metazoa
Любой организм, орган или клеточный ансамбль обладают квазифрактальными свойствами, которые, однако, могут быть выражены в большей или меньшей степени. В одних живых системах хаотичные паттерны наг

Топологический дизайн Metazoa
Биологи традиционно и повсеместно используют язык геометрии Эвклида для описания структур и динамики формообразования на субклеточном, клеточном, тканевом уровнях, в индивидуальном развитии организ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги