рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Фрактальный хаос в организации нейронов

Фрактальный хаос в организации нейронов - раздел Науковедение, ФРАКТАЛЫ И ХАОС В БИОЛОГИЧЕСКОМ МОРФОГЕНЕЗЕ   Нами Рассмотрена Квазифрактальная Организация Нейронов Рыб, Р...

 

Нами рассмотрена квазифрактальная организация нейронов рыб, ранее в таком аспекте не исследованных. Определение значения фрактальной размерности применено для количественной характеристики морфологических паттернов некоторых типов нейронов головного мозга опистоцентра и кеты; для сравнения использованы также некоторые нейроны мозга человека. Для количественной характеристики морфологических паттернов нейронов головного мозга рыб применено определение их фрактальной размерности (D) методом разбиения на квадраты (box-counting method) с помощью компьютерной программы ImageJ 1.20s. Найдены значения фрактальной размерности нескольких типов нейронов головного мозга опистоцентра и кеты; для сравнения использованы также некоторые нейроны мозга человека. Показано, что фрактальная (дробная) размерность как количественный показатель заполнения двумерного пространства черно-белым изображением клетки, отражающий сложность морфологической организации нейронов, варьирует у разных типов нейронов в пределах значений D от 1.22 до 1.72. Фрактальная размерность достигает наиболее высоких значений у менее специализированных, выполняющих более разнообразные функции нейронов, тогда как нейроны узкой специализации характеризуются относительно низкой фрактальной размерностью. Таким образом, значение фрактальной размерности дает количественную характеристику пространственной сложности нейрона, коррелирующую с его морфофункциональной организацией. Фрактальная (дробная) размерность (Mandelbrot, 1983, Федер, 1991) служит показателем заполнения пространства фрактальной структурой. Фрактальная размерность проекции нейрона на плоскости оказывается промежуточной между целочисленными значениями топологической размерности клеточного отростка как линии (D=1) и двумерного пространства (D=2), заполняемого ветвящимися нейритами. Заполнение окружающего пространства ветвящимися фрактальными структурами обеспечивает живым организмам максимизацию площади обмена с окружающей средой при минимальном объеме – в этом состоит биологическая функция таких структур.

Фрактальный анализ неоднократно применен в нейробиологии: достаточно широко использовано определение фрактальной размерности нейронов мозга и ганглиозных клеток сетчатки (Wingate et al., 1992; Kniffki et al., 1994; Smith, Neale, 1994; Smith, Lange, 1996; Smith et al., 1996; Jelinek, Spence, 1997; Jelinek, Fernandez, 1998; Fernandez et al., 1999). Показано, что арборизация нейритов осуществляется в соответствии с фрактальными принципами самоподобия и самореферентности, причем зависимость увеличения фрактальной размерности от фактора времени нелинейна (Smith, Lange 1996). Все цитированные авторы приходят к заключению о целесообразности применения фрактальной размерности для характеристики морфологии нейронов и возможности использования этой размерности в качестве дополнительного морфологического параметра для морфофункциональной классификации нейронов и ганглиозных клеток. Утверждение критически настроенных авторов двух работ (Panico, Sterling, 1995; Murray, 1995) о том, что нейроны и сосуды сетчатки не фрактальные, а заполняющие пространство структуры, основано на недоразумении, поскольку фрактальным структурам присуще свойство частичного заполнения пространства более высокой размерности – именно поэтому их размерность не целочисленная, а дробная. Кроме того, Панико и Стерлинг демонстрируют неспособность компьютерной программы, рассчитывающей фрактальную размерность, отличать фрактальные изображения от образов, лишенных фрактальных характеристик – но в программы для определения размерности не входит задача распознавания фрактальных структур, это должны делать исследователи, а не машина.

Применение для определения фрактальной размерности нейронов и ганглиозных клеток сетчатки классического метода разбиения изображения на квадратные ячейки все меньшего размера с подсчетом числа квадратов, включающих часть анализируемой структуры (box-counting method) наряду с другими методами определения фрактальной размерности привело авторов таких исследований к заключению о близости значений фрактальной размерности нейронов, полученных разными методами (Wingate at al., 1992; Smith, Lange, 1996; Smith et al., 1996). Показано также, что одинаковыми значениями фрактальной размерности могут обладать нейроны различной морфологии, отростки которых в равной мере заполняют двумерное пространство (Smith, Neale, 1994; Smith, Lange, 1996; Smith et al., 1996). Поэтому значение фрактальной размерности, помогая количественно охарактеризовать степень сложности организации нейронов, нередко оказывается недостаточным для их классификации; в таком случае необходимо дополнительное применение других количественных параметров, например, числа ветвей первичных дендритов, топологических характеристик ветвления дендритов, показателя лакунарности (Wingate at al., 1992; Kniffki et al., 1994; Smith, Lange, 1996; Smith et al., 1996; Jelinek, Spence, 1997; Jelinek, Fernandez, 1998; Costa et al., 2002). Поскольку нейроны, как и другие квазифрактальные биологические объекты, представляют собой фракталы с неоднородным распределением точек множества, или мультифракталы, для характеристики морфологии нейронов перспективно использование методов мультифрактального анализа (Smith et al., 1996; Fernandez et al., 1999; Costa et al., 2002).

Ганглиозные клетки сетчатки, нейриты которых ветвятся практически в одной плоскости – планарная модельная система, широко используемая для определения фрактальной размерности, достигающей у этих клеток значений 1.6-1.7 (Caserta et al., 1990; Wingate et al., 1992; Jelinek, Spence, 1997; Jelinek, Fernandez, 1998; Fernandez et al., 1999). Другая планарная модель для изучения квазифрактальной организации нейронов – культивируемые в однослойной культуре нервные клетки, в частности, нейроны спинного мозга мыши (Smith, Neale, 1994; Smith, Lange, 1996;), фрактальная размерность которых варьировала от 1.2 до 1.5 у клеток разных типов, возрастая по мере их дифференцировки. Были проведены также исследования с использованием двумерных черно-белых изображений трехмерных нейронов мозга млекопитающих; значения их фрактальной размерности, полученные путем использования метода разбиения на квадраты, варьировали в пределах 1.2 –1.6 (Kniffki et al., 1994; см. также Smith et al., 1996).

В работе использовали выборки нейронов мозга костистых рыб: опистоцентра безногого Pholidapus dybowskii (10 особей) и тихоокеанской кеты Oncorhynchus keta (6 особей). Для сравнения были проанализированы нейроны слуховой коры человека – материал, полученный от 2 трупов скоропостижно скончавшихся людей. Головной мозг фиксировали в 4%-ном растворе параформальдегида в течение недели. Для выявления нейронов применяли классический быстрый хромо-серебряный метод Гольджи. Материал заливали в парафин, резали на ротационном микротоме, далее обрабатывали по стандартной методике. Толщина срезов для всех видов составляла 50 мкм. Черно-белые изображения нейронов были получены с помощью рисовального аппарата, при 100-кратном увеличении. Изображения сканировали с разрешением 200 точек на дюйм. Фрактальная размерность изображений была определена методом box-counting с помощью компьютерной программы анализа изображений ImageJ 1.20s (http://rsb.info.nih.gov.il, автор Wayne Rasband). Значение фрактальной размерности было определено для небольших выборок нейронов (4-7 клеток каждого типа).

На рис. представлены изображения трех типов нейронов опистоцентра, расположенные в порядке возрастания фрактальной размерности (рис. 1, а-в), а также двух типов нейронов кеты (рис. 1, г, д) Для наглядности на рисунке изображены также два объекта канонической целочисленной размерности: линия, топологическая размерность которой равна 1, и двумерный объект – плоскость, с топологической размерностью, равной 2. В промежутке между этими целочисленными значениями размерности расположены в порядке увеличения значения фрактальной размерности анализируемых объектов, представленных проекциями на плоскость очертаний нейронов (исходно лежащих в трехмерном пространстве). Все нейроны характеризуются дробной, фрактальной размерностью – количественным показателем заполнения двумерного пространства силуэтом нейрона – значения которой даны для каждого отдельного изображения, а также нанесены на шкале (рис. ).

Веретеновидные биполярные нейроны Люгаро инфраганглионарного сплетения мозжечка (рис.1, а) – высокодифференцированные короткоаксонные проекционные нейроны – характеризуются невысокой фрактальной размерностью, варьирующей в пределах 1.22 – 1. 31. Такое значение D коррелирует с относительно простой клеточной морфологией: от тела нейронов отходят 2-3 инициальных дендрита с 4-6 последующими дихотомическими ветвлениями.

Численное значение фрактальной размерности многодендритных звездчатых короткоаксонных клеток Гольджи II типа (рис.1, б) – высокодифференцированных элементов параганглионарной области мозжечка – варьирует от 1.52 до 1.64. Высокое значение фрактальной размерности этих клеток определяется большим числом первичных дендритов, многократно ветвящихся и несущих многочисленные шипики.

Еще выше значение фрактальной размерности вставочных (D=1.62-1.69) и проекционных (D=1.70-1.72) нейронов слухового бугорка (полулунного торуса) опистоцентра: это нейроны с большим числом первичных дендритов с низким уровнем разветвленности, в отдельных случаях образующих варикозные расширения (рис.1, в).

В этом морфологическом ряду увеличение численного значения фрактальной размерности весьма очевидным образом коррелирует с возрастанием степени морфологической расчлененности пространственной организации клеток и ветвящихся дендритных отростков.

Пирамидоподобные и звездчатые аллодендритные клетки паллиума кеты – проекционные нейроны с шипиками (рис. 1, г, д) – характеризуются весьма обычным для нейронов позвоночных значением фрактальной размерности 1.51-1.55, что определяется морфологией относительно немногочисленных, с немногими ветвями, но занимающих сравнительно большую площадь, дендритов.

Использованные для сравнения изображения нейронов человека: звездчатых (рис. ) и пирамидных (рис. ) клеток коры – гетеротипических элементов с обширными связями с ассоциативными областями – обладают сложной пространственной организацией ветвящихся и несущих многочисленные шипики дендритов и соответственно высоким значением фрактальной размерности, варьирующим в пределах 1.64-1.67. Терминальный отрезок апикального дендрита пирамидного нейрона срезан – он покидает пределы гетеротипического слоя и ветвится в I-ом слое коры, не участвуя в формировании анализируемого фрактального паттерна нейрона.

Значение фрактальной размерности D=1.65, определенное для группы нейронов полулунного торуса опистоцентра (рис. 3), не превышает обычных значений, характеризующих отдельные нейроны этого типа.

В нашей работе были выбраны несколько типов нейронов мозга рыб с достаточно четко выраженными морфологическими различиями и определена фрактальная размерность малых выборок таких нейронов классическим методом разбиения на квадраты (box-counting method) с целью поиска корреляции значения фрактальной размерности с морфофункциональной организацией анализируемых нейронов. Поскольку определяемое для какого-либо единичного объекта значение фрактальной размерности представляет собой интегральную, статистическую характеристику фрактальных свойств этого объекта, мы сочли возможным для начального поискового исследования ограничиться одним методом определения фрактальной размерности и небольшим числом исследованных клеток каждого типа. Были использованы изображения проекций трехмерных клеток на двумерную плоскость, что, разумеется, представляет собой упрощение, вносящее некоторую погрешность в определяемое значение фрактальной размерности, однако эта погрешность однородна для всех изображений, полученных и сравниваемых друг с другом на основе единой стандартной методики.

Найденные нами значения фрактальной размерности нейронов в пределах от 1.2 до 1.7 вполне соответствуют полученным другими исследователями значениям D для разных типов нейронов. Выявленная нами корреляция значения фрактальной размерности с визуально оцениваемой степенью сложности пространственной организации нейронов также согласуется с результатами других работ: повышение значения фрактальной размерности на 0.1 – 0.2 соответствует весьма существенному усложнению морфологического паттерна нейронов.

Поскольку при определении фрактальной размерности нейронов используется изображение клеточного тела с отходящими от него и ветвящимися вблизи тела клетки дендритами, тогда как получить при этом полное изображение аксона на всем его протяжении практически невозможно, то основной вклад в определяемое значение фрактальной размерности вносится именно структурой дендритов. Известно, что основная функция дендритов – получение входящей информации, а также обработка и интеграция генерируемых синапсами сигналов (Stern, Marx, 2000; Barinaga, 2000): “дендриты – мозг нейронов»” (J. Eberwine, цит. по: Barinaga, 2000). Различный паттерн дендритов обеспечивает выполнение нейронами специализированных задач (Häusser et al., 2000).

Из проанализированных клеточных типов биполяры инфраганглионарного сплетения мозжечка опистоцентра, так называемые клетки Люгаро, являются элементами, обладающими наиболее низким значением фрактальной размерности D=1.22-1.31. Многодендритные нейроны Гольджи характеризуются более высоким значением D=1.52-1.64. И те, и другие клетки у рыб причисляются к разновидностям одного и того же функционального типа (Puschina, Varaksin, 2002). Нейроны Люгаро опистоцентра локализованы не в собственно гранулярном слое (такой паттерн распределения выявлен у млекопитающих), а в области инфраганглионарного сплетения ганглиозных клеток Пуркинье, причем у опистоцентра популяция нейронов Люгаро содержит как горизонтально, так и вертикально ориентированные биполяры (Пущина, Вараксин, 2001). Многодендритные нейроны Гольджи являются крайне «нагруженными» в функциональном отношении клетками, воспринимающими разномодальную информацию. Это крупные нейроны с большим числом первичных дендритов, которые в свою очередь также имеют высокий порядок ветвления, причем количество таких клеток у опистоцентра невелико,. Таким образом, нейроны Гольджи, имеющие комплексную организацию, интегрируют большее число функций, нейроны же Люгаро выступают в качестве узкоспециализированных клеток, чем и определяются их низкая фрактальная размерность.

Нейроны паллиума кеты по значению фрактальной размерности (рис. ) расположены непосредственно за многодендритными нейронами Гольджи. Наиболее дифференцированные клеточные типы у кеты локализованы в центральной и ростро-медиальной зонах конечного мозга. В соответствии с общепринятой в настоящее время классификацией нейроны этих зон могут быть отнесены к классу специализированных (аллодендритных) клеток. В первую очередь это касается пирамидоподобных клеток (D=1.53; рис. ), характеризующихся наличием сильно развитой сети базальных дендритов, что делает их во многом сходными с пирамидными нейронами коры полушарий большого мозга высших позвоночных. Мультиполярные радиальные нейроны (D=1.51-1.56; рис. ) расположены в глубоких слоях периферических зон паллиума и в центральной зоне. Степень ветвления их дендритов не превышает 3-4 уровней, аксон часто отходит не от тела нейрона, а от проксимального участка инициального дендрита. Исследования различных авторов и собственные данные приводят к выводу о том, что в паллиуме костистых рыб отсутствуют высокодифференцированные короткоаксонные звездчатые нейроны, наличие которых определяет черты прогрессивной специализации конечного мозга. Таким образом, аллодендритные нейроны паллиума кеты являются примером менее дифференцированного клеточного типа, чем нейроны мозжечка.

Следующая группа клеток представлена популяцией нейронов слухового бугорка (полулунного торуса) опистоцентра. У этих нейронов обнаружено наиболее высокое значение фрактальной размерности, что отражает их высокую морфологическую расчлененность. Среди проанализированных клеток вставочные (ретикулярные) нейроны характеризуются более низким значением D=1.56-1.69. У крупных проекционных клеток фрактальная размерность достигает D=1.68-1,72. Предварительные исследования, проведенные на опистоцентре, показали, что в полулунном торусе, являющемся примордиальным морфофункциональным эквивалентом нижней пары четверохолмия млекопитающих (Wullimann, 1997), нейроны различных функциональных типов не образуют стратифицированной структуры – скорее же организация слуховой области таламуса у этого представителя костистых рыб представлена совокупностью нейронов, организованных в слабо дифференцированные диффузные, напоминающие ядра, образования. Проанализированные клеточные типы являют примеры высоко расчлененных глиоподобных структур. Вставочные нейроны также характеризуются большим числом первичных дендритов с низким порядком ветвления, не превышающим 2-3 уровней. Следовательно, для опистоцентра характерен низкий морфоанатомический уровень организации данного таламического центра. Морфологические признаки клеток свидетельствуют об их глиоподобной структуре, для которой свойственно наличие большого количества первичных дендритных коллатералей, их низкая общая разветвленность, слабое топологическое разделение ретикулярных и проекционных элементов. В целом нейроны сочетают в себе морфологические признаки глиальной и ретикулярной клетки, что определяет их как малодифференцированные функциональные единицы. Таким образом, высокая расчлененность клеток слухового бугорка опистоцентра и вытекающая из нее высокая фрактальная размерность не свидетельствует о дифференцированности данного клеточного типа, а наоборот, является маркером слабо специализированной глиоморфной структуры.

Для рассмотренных выше нейронов мозжечка: клеток Гольджи и клеток Люгаро фактор фрактального заполнения пространства дендритной арборизацией детерминирован в первую очередь функциональными свойствами нейронов. В данном случае на черты прогрессивной специализации нервных клеток указывает порядок и форма ветвления их дендритов. Эти нейроны, имея 5-6 инициальных дендритов (для клеток Гольджи) и 2-3 (для клеток Люгаро) дают обильную серию разветвлений в молекулярном и гранулярном слоях мозжечка. По современным цитоархитектоническим критериям нейроны Люгаро и Гольджи соответствуют высокоспециализированным звездчатым короткоаксонным проекционным клеткам. Рассмотренные нами клетки Гольджи и Люгаро входят в состав ганглиозного слоя мозжечка, имеющего выраженную ламинарную организацию. Различие морфологических свойств этих нейронов заключается в степени их функциональной дифференцировки. В любом случае по осуществляемым ими функциональным эффектам нейроны Гольджи сравнимы с клетками Пуркинье.

У кеты, как и у многих других костистых рыб, дорсальный теленцефалон еще не стратифицирован, а представлен более или менее обособленными клеточными скоплениями – зонами.

Нейроны слухового бугорка, как отмечалось выше, по макроанатомическим критериям отнесены к области, имеющей слабовыраженную ядерную, практически ретикулярную, структуру. Напомним, что ядерная структура, в отличие от структуры экранного типа является примером иного, более низкого уровня нейронной организации (Савельев, 2001). Наконец, ретикулярная нейронная организация оказывается наименее дифференцированной и подразумевает сетчатый, не локализованный паттерн распределения нервных (в основном ретикулярных) клеток. У опистоцентра в зоне слухового бугорка – полулунного торуса – реализован переходный между ядерным и ретикулярным тип организации. На цитоархитектоническом уровне, как показано выше, представлен тип малодифференцированных нейронов, лишенных выраженных проекционных или ассоциативных свойств. Морфологические характеристики указывают на низкую дифференцировку этих клеток, что проявляются в наличии большого числа первичных дендритов, имеющих низкий порядок последующего ветвления, отсутствии элементов микроцитоскульптуры на поверхности дендритов и отсутствии качественных параметрических отличий между проекционными (длинноаксонными) и ретикулярными клетками. Указанные критерии позволяют заключить, что высокие значения фрактальной размерности данных клеток являются следствием их структурной недифференцированности и глиоподобности.

Итак, схема (рис. 1) демонстрирует возрастание фрактальной размерности по мере уменьшения специализированности нейрональных типов рыб.

Пирамидные и не пирамидные нейроны височной коры человека были исследованы с целью сопоставления (в самом первом приближени) фрактальных свойств клеток низших и высших позвоночных. Для приведенных нейронов коры характерны высокие значения фрактальной размерности D=1.66-1.67.

По данным, приводимым Смитом и Ланге (Smith, Lange, 1996), двигательные кортикальные пирамидальные нейроны кошки морфологически значительно сложнее, чем у приматов, что предположительно объясняется их большей специализацией и меньшим числом функций у обезьян; сложность же организации клеток глии Бергмана, оцениваемая по значению D, убывает в ряду крыса>обезьяна>человек, т.е. у более мелких и филогенетически менее высоко организованных животных глиальные клетки характеризуются более высокой фрактальной размерностью и предположительно выполняют более сложные функции. Наши данные на нейронах опистоцентра подтверждают это заключение о корреляции относительно низких значений фрактальной размерности с узкой специализацией клетки, а высокой фрактальной размерности, наоборот, с меньшей функциональной специализацией нейронов.

Дизайн ветвящихся фрактальных биологических структур оптимален для выполнения функций распределения потока внешней среды внутри организма животного (Weibel 1991, 1994; Goldberger, 1997; Исаева и др., 2001). Как полагает Смит, фрактальная морфология дендритов нервных клеток подобным же образом оптимизирована для выполнения функции передачи потока информации (Smith, Neale, 1994; Smith, Lange, 1996) – можно лишь присоединиться к этому мнению. Рецепторные поля дендритов осуществляют сбор и обработку информации, передаваемой к телу нейрона; терминальные ветви аксона передают результирующий сигнал на выходе. Работами группы Смита показано, что ветвящиеся дендриты и терминальная арборизация аксона различаются значением фрактальной размерности – и здесь фрактальная размерность может служить полезным количественным дескриптором (см. Smith, Lange, 1996). Фрактальная размерность, вероятно, может служить маркером возрастного изменения морфологических свойств нервных клеток в растущем и зрелом организме (Smith, 1994). По данным Смита с соавторами, возрастание значения фрактальной размерности на 0,1 отражает усложнение морфологической организации нейронов, растущих в клеточной культуре, приблизительно вдвое (см. Smith et al., 1989; Jelinek, Fernandez, 1998). Подобное соотношение прослеживается при сопоставлении значений фрактальной размерности нейронов опистоцентра и визуально оцениваемой степени сложности морфологии клеток.

Таким образом, значение фрактальной размерности неоднозначным образом связано со сложностью морфофункциональной организации нейрона, возрастая по мере дифференциации нейронов в индивидуальном развитии и достигая наиболее высоких значений у менее специализированных, выполняющих более разнообразные функции, нейронов.

Сравнение фрактальной размерности нейронов мозга человека и исследованных представителей рыб не позволяет выявить каких-либо однозначных различий сложности организации сопоставимых морфологически и функционально нейронов. Наиболее ощутимым препятствием для установления прямой аналогии между пирамидоподобными нейронами кеты и пирамидными клетками высших позвоночных является то, что последние характеризуются более жестко детерминированным морфологическим паттерном базальных и апикальных дендритов, а также упорядоченным распределением шипиков на их поверхности. Пирамидные и звездчатые клетки коры человека – высокодифференцированные короткоаксонные клетки при выраженности экранной структуры неокортекса. По макроанатомическим критериям паллиум кеты не является аналогом такового высших позвоночных и организован в виде совокупности ядер, а не по экранному типу. У кеты как представителя костистых рыб «жесткость» морфологических параметров клеток отсутствует, следствием чего является некоторая пластичность и вариабельность морфологии типов нейронов.

Квазифрактальность и вариабельность организации еще более выражены при рассмотрении морфологии и анализе фрактальной размерности групп нейронов рыб (рис. 3). Близость значений фрактальной размерности отдельных нейронов и фрагмента их сети подтверждает масштабную инвариантность этого показателя и свидетельствует о фрактальности организации кластера нейронов. Ранее уже было показано, что сети нейронов характеризуются проявлениями фрактальной организации как в пространстве, так и во времени (Walishewski, Konarski, 2002).

Известно, что рост нейритов, их ветвление и установление межнейрональных связей определяется множеством генетических и эпигенетических факторов. Рост ветвящихся дендритов зависит от динамического поведения конусов роста – активных структур отрастающих кончиков дендритов, направление роста, удлинение и ветвление которых определяются локальным окружением клетки (см. Kniffki et al., 1994). Прослежено быстрое образование шипиков и быстрый морфогенез дендритов при стимуляции в эксперименте – таким образом локальная активность формирует структуру нейронов и их контуров (Barinaga, 1999; Malevic-Savatic et al., 1999). Наиболее детально исследованы молекулярные механизмы, ответственные за направление роста и ветвление аксонов, как и формирование высоко точного паттерна межнейрональных связей. Навигация растущего конуса роста нейронов направляется непрерывной интеграцией позитивных и негативных сигналов окружения (Dickson, 2002). Найдены свидетельства перепроизводства и конкуренции нейронов, их отростков и синапсов в развивающейся нервной системе позвоночных (см. Rakic et al., 1986; Савельев, 2002). Конкуренция на клеточном уровне неизбежно порождает элементы хаоса (случайности, вариабельности), выявленные в организации сетей нейронов; частично хаотический режим, связанный со способностью контуров нейрональных связей и сетей нейронов к самоорганизации – нормальная характеристика функционирования нервной системы (Goldberger et al., 1990; Schiff et al.,1994). Фрактальная структура нейрона, возможно, связана с проявлениями хаоса в нервной системе (Goldberger et al., 1990).

Элементыхаоса выявлены в функционировании нейронов и их сетей, найдена хаотическая фрактальная динамика на электроэнцефалограммах человека, причем именно хаотическая динамика функционирования нервной системы организма оказалась нормальной, тогда как избыточно упорядоченный режим свидетельствует о патологии (West, Goldberger, 1987; Голдбергер и др., 1990). Например, патологическая периодичность в функционировании нервной системы проявляется при эпилепсии, паркинсонизме, маниакально-депрессивном психозе.

Количественные морфологические характеристики для идентификации разных типов нейронов могут включать как фрактальную размерность, так и топологические характеристики ветвления дендритов. В этом случае можно получить и индивидуальное, неповторимое сочетание нескольких характеристик – «портрет» каждого нейрона, и выделить общие черты, типичные для определенных классов нейронов.

Иная стратегия построения сети нейронов выявляется у организмов с жестко детерминированным развитием и малым постоянным числом клеток, что наиболее выражено у круглых червей. У детально исследованного C. elegans, организм которого в дефинитивном состоянии содержит 959 клеток (не считая половых, число которых непостоянно), нейронная сеть включает 302 клетки, образующих около 8 тысяч синапсов (Sulston et al., 1983; White et al., 1986; см. также Воронов, 2003). Нейронная сеть нематод, несомненно, одна из самых простых среди представителей Bilateria. Более простой, по-видимому, можно считать сеть нейронов представителей Radiata, например, гидры и других Cnidaria. Простота организации нервной системы C. elegans проявляется не только в относительно малом числе составляющих ее элементов и их синаптических связей, но также в относительно малом числе ветвлений отростков нервных клеток. Сопоставляя общее число клеток в организме с числом нейронов в у этого червя и человека (число всех клеток оценивается как 10 в степени 14, числомнейронов – 10 в степени 10-11), Свердлов (2003) подчеркивает несоответствие огромного различия сложности организации этих двух видов при малом различии числа генов (соответственно 19000 и 30000-40000). По нашему мнению, в самом общем виде это объясняется нелинейностью возрастания сложности системы за счет самоорганизации, внутренних взаимодействий элементов системы на всех уровнях ее биологической организации. Самоорганизация же нейронных сетей, как и проявления хаоса в их морфологии и функционировании обеспечивают адаптацию к неизбежно хаотически меняющейся и непредсказуемой среде обитания.

 

ПОДПИСИ К РИСУНКАМ

 

Рис. 1. Фрактальная размерность (D) изображений различных типов нейронов головного мозга опистоцентра Pholidapus dybowskii:

а – горизонтальный биполяр Люгаро,

б – многодендритный нейрон Гольджи,

в – нейрон слухового бугорка

и кеты Oncorhynchus keta:

г – пирамидоподобный нейрон,

д – звездчатый нейрон

Рис. 2. Фрактальная размерность (D) нейронов верхней височной коры человека:

а– звездчатый нейрон,

б – пирамидный нейрон (терминальный отрезок апикального дендрита пирамидного нейрона срезан)

Рис. 3. Кластер глиоподобных нейронов полулунного торуса опистоцентра Pholidapus dybowskii, обладающий свойством самоподобия: фрактальная размерность скопления клеток (D=1,65) не превышает таковой отдельных нейронов.

 

 

– Конец работы –

Эта тема принадлежит разделу:

ФРАКТАЛЫ И ХАОС В БИОЛОГИЧЕСКОМ МОРФОГЕНЕЗЕ

В В Исаева Ю А Каретин...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Фрактальный хаос в организации нейронов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Исследования фракталов в биологии
Фрактальная самоорганизация клеток Фрактальный хаос в организации нейронов Фракталы и хаос в организме Фракталы и хаос в морфологии гастроваскулярной системы иедузы Aurel

Фрактальная геометрия
Фрактальная геометрия обязана своим возникновением (в современном виде) Б. Мандельброту и развитию компьютерной техники. Бенуа Мандельброт (Benoit Mandelbrot, во французском произношении – Б. Манде

Динамический (детерминированный) хаос
  В классической равновесной термодинамике мерой хаоса служила энтропия. Понятие энтропии введено Клаузиусом. Цитируем два первых закона термодинамики в формулировке Р. Клаузиуса (R.

Хаотические фракталы природы
Структура идеального компьютерного фрактала сохраняется при любых масштабах ее рассмотрения. Чтобы получить такой фрактал, итерации должны продолжаться бесконечно долго: если полученное множество у

Теория самоорганизации
Сценариям перехода от порядка к хаосу противостоит сценарий противоположной направленности - возникновение порядка из хаоса, самоорганизация. Возникновение диссипативных структур как перех

Биологическая самоорганизация и моделирование в биологии
В среде биологов господствует редукционизм, в основе которого лежат представления об однозначной детерминированности причинно-следственных связей. Такой подход назван Л.В. Белоусовым (2001)

Исследования фракталов в биологии
Фрактальная геометрия дала возможность сжатого математического описания биологических структур и процессов, недоступных для описания языком геометрии Эвклида. «Ученые (я уверен) бу

Фракталы и хаос в организме
  Попытаемся рассмотреть проявления хаоса в морфологической организации некоторых квазифрактальных структур многоклеточных животных. Многие биологи весьма скептически относятся к утве

Фракталы и хаос в ветвления каналов гастроваскулярной системы иедузы Aurelia aurita
Реальная возможность оценки степени хаотичности некоторых систем возможна в сравнении их частей в пределах одного организма: у радиально симметричных - в разных антимерах, у билатерально симметричн

Формирование хаотических паттернов в онтогенезе медузы Aurelia.
Неоднократно была отмечена вариабельность морфологической организации А. aurita с нарушениями тетрарадиальной симметрии: отклонением от нормы числа ропалиев, изменением числа перрадиальных и

Подписи к рисункам
Рис. 1. Паттерн каналов гастроваскулярной системы метаэфиры (а) и ранней медузы Aurelia aurita (б, в); стрелкой указан отросток кольцевого канала. Длина масштабной линии 250 мкм. Ри

Хаотические фракталы жаберной трахейной системы личинок поденок
  Богатый материал для анализа изменчивости фрактальных структур в пределах одного организма можно получить, изучая так называемые трахейные жабры (тергалии) личинок поденок - как изв

Хаос и фракталы в эволюции Metazoa
Любой организм, орган или клеточный ансамбль обладают квазифрактальными свойствами, которые, однако, могут быть выражены в большей или меньшей степени. В одних живых системах хаотичные паттерны наг

Топологический дизайн Metazoa
Биологи традиционно и повсеместно используют язык геометрии Эвклида для описания структур и динамики формообразования на субклеточном, клеточном, тканевом уровнях, в индивидуальном развитии организ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги