рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Свойства центра масс

Свойства центра масс - раздел Образование, СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ В Предыдущей Главе Мы Установили Факт Существования Некоторой Замечательной Т...

В предыдущей главе мы установили факт существования некоторой замечательной точки, называемой центром масс. Она замечательна тем, что если на частицы, образующие тело (неважно, будет ли оно твердым или жидким, звездным скоплением или чем-то другим), дей­ствует великое множество сил (конечно, имеют­ся в виду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому уско­рению этой точки, как будто в ней сосредо­точена вся масса тела М. Давайте теперь обсу­дим свойство центра масс несколько подробнее.


Положение центра масс (сокращенно ц. м.) определяется уравнением

 

Это, разумеется, векторное уравнение, т. е. фактически три уравнения — по одному для каждого из трех направлений. Но мы будем рассматривать только x-направление; если вы поймете, что происходит в x-направлении, то поймете и два остальных. Что означает равен­ство Хц.м.=Smixi/Smi? Предположим на ми­нуту, что тело разделено на маленькие кусочки с одинаковой массой m, причем полная масса будет равна числу таких кусочков N, умножен­ному на массу одного кусочка, скажем 1 г, или какую-то другую единицу. Тогда наше уравне­ние просто означает, что нужно взять коорди­наты х всех кусочков, сложить их и резуль­тат разделить на число кусочков, т. е. Xц.м.=mSxi/mN=Sxi/N. Иными словами, если массы кусочков равны, то Хц. м.- будет просто средним арифметическим x-коорди­нат всех кусочков. Но предположим, что один из кусочков вдвое тяжелее, чем каждый из остальных. Тогда в нашу формулу его координата будет входить с коэффициентом 2, т. е. в суммах ее нужно учитывать дважды. Нетрудно понять, почему это про­исходит. Ведь тяжелый кусочек можно представить себе как бы состоящим из двух легких, таких же, как и все остальные, так что, когда мы вычисляем среднее, его координату х нужно учитывать дважды: ведь кусочков-то в этом месте два. Таким образом, Хц.м. равно просто среднему арифметическому х-координат всех масс, причем каждая координата считается некоторое число раз, пропорциональное массе, как будто она разделена на маленькие кусочки единичной массы. Исходя из этого, легко доказать, что Хц.м. должна находиться где-то между самой близ­кой и самой далекой частичкой. Вообще центр масс должен лежать где-то внутри многогранника, проведенного через край­ние точки тела. Однако вовсе не обязательно, чтобы центр масс находился в самом теле; ведь могут быть тела, подобные окруж­ности, например обруч, центр масс которого находится в гео­метрическом центре, а не на самом обруче.

Конечно, если объект симметричен, например прямоугольник, обладающий линией симметрии, то его центр масс должен лежать где-то на этой линии. Кстати, прямоугольник имеет еще одну линию симметрии и это однозначно определяет поло­жение его центра масс. Для просто симметричного объекта центр масс должен лежать где-то на оси симметрии: ведь отри­цательных х в этом случае ровно столько же, сколько и поло­жительных.

Существует еще один очень забавный способ нахождения центра масс. Вообразите

себе тело, состоящее из двух кусков А и В (фиг, 19.1).


 

 

Фиг. 19.1. Центр масс сложного тела лежит на линии, соеди­няющей центры масс двух составляющих его частей.

 

Центр масс в этом случае можно найти сле­дующим образом. Находим сначала отдельно центры масс сос­тавных частей А и В и их полные массы МА и МB . После этого находим центр масс двух точечных тел, одно из которых имеет массу МА и расположено в центре масс части А, а другое — массу МB и расположено в центре масс части В, Полученная точка и будет центром масс всего тела. Другими словами, если нам известны центры масс всех частей сложного тела, то, чтобы найти его центр масс, не нужно повторять все сначала, а дос­таточно просто найти центр масс системы точечных тел с мас­сами, равными массам каждой из частей и расположенными в их центрах масс. Посмотрим, как это получается. Пусть мы хотим определить центр масс сложного тела, одни из частиц которого принадлежат части А, а другие — части В. При этом мы можем разбить полную сумму Smixi на сумму по части А, т. е. SAmixi и сумму по части В, т. е. SBmixi. Если бы мы находили центр масс только части А, то нам потребовалась бы первая из этих сумм, которая, как вы знаете, равна МАХА, т. е. полной массе части А на x-координату ее центра масс: это просто следствие теоремы о центре масс, применен­ной к части A. То же самое можно сказать и о части В. Сумма SBmixi должна быть равна МВХВ. Сложив эти два результата, мы, конечно, должны получить MX, т. е.

МХц.м.=Smixi+Smixi=МАХАВХВ. (19.2)

Полная же масса М, очевидно, равна МАB, так что выражение (19.2) представляет собой не что иное, как определение центра масс двух точек, одна из которых имеет массу МА и координату ХА, а другая — массу МB и координату ХB.

Теорема о движении центра масс интересна не только сама по себе, она еще играет очень важную роль в развитии нашего понимания физики. Если мы предположим, что законы Ньютона верны только для маленьких частей, составляющих большое те­ло, то эта теорема показывает, что они верны также и для боль­шого тела. Мы можем не знать его детального строения и нам известны лишь общая масса и полная сила, действующая на него. Другими словами, законы Ньютона имеют ту особенность, что если они справедливы в малом масштабе, то справедливы и в большом. Нет никакой нужды рассматривать футбольный мяч как ужасно сложную вещь, состоящую из мириада взаимодей­ствующих частиц, а достаточно изучить только движение его центра масс под действием внешней силы F, чтобы получить F=ma, где а — ускорение центра масс, а m — полная масса мяча. Итак, закон F=ma воспроизводит сам себя в большом масштабе. (Наверное, должно быть какое-нибудь хорошее гре­ческое слово, которым можно было бы назвать подобные вос­производящие себя в большом масштабе законы.)

Нетрудно, конечно, догадаться, что первый открытый чело­веком закон должен быть именно таким законом, воспроизво­дящим самого себя в большом масштабе. Почему? Да просто потому, что истинный размер фундаментальных «винтиков и колесиков» Вселенной есть атомный размер, который настолько меньше размеров окружающих нас вещей, что только сейчас начинает входить в обычную жизнь. Итак, первая открытая человеком закономерность не могла иметь отношения к разме­рам атомного масштаба. Если бы законы для малых частиц не воспроизводили себя в большом масштабе, то открыть их было бы не так-то легко. А что можно сказать об обратной проблеме? Должны ли законы микромира быть теми же самыми, что и для больших тел? Никакой необходимости в этом, конечно, нет.

Давайте, однако, предположим, что истинное движение атомов описывается неким странным уравнением, которое не воспроиз­водит себя при переходе к большему масштабу. Вместо этого оно обладает тем свойством, что при таком переходе его можно приближенно заменить каким-то выражением, которое при все большем и большем увеличении масштаба воспроизводит само себя. Это вполне может случиться, и в действительности так оно и происходит. Законы Ньютона являются как бы «кончиком хвоста» атомных законов, продолженных до очень больших размеров. Истинные законы движения частиц очень малых раз­меров весьма специфичны, но если мы возьмем большое число частиц и скомбинируем законы их движения, то приближенно, и только приближенно, получим законы Ньютона. После этого законы Ньютона позволяют нам двигаться ко все большим раз­мерам, оставаясь при этом теми же самыми законами. В сущ­ности, при переходе ко все большим и большим размерам они все точнее и точнее описывают природу. Так что факт самовос­производимости законов Ньютона — отнюдь не фундаменталь­ное свойство природы, а важная историческая особенность.

Основываясь на своих первых наблюдениях, мы никоим обра­зом не смогли бы открыть фундаментальные атомные законы, поскольку наблюдения эти были слишком грубыми. Действи­тельно, фундаментальные атомные законы, которые мы назы­ваем квантовой механикой, так сильно отличаются от законов Ньютона, что понять их не просто. Ведь у нас есть только опыт обращения с телами больших размеров, а крохотные атомы ведут себя совершенно невиданным для таких тел образом. Мы не можем сказать: «Электроны в атомах напоминают планеты, крутящиеся вокруг Солнца», или что-то в этом роде. Они не похожи ни на что известное нам, ибо мы не видим ничего похо­жего на них. Если мы применяем квантовую механику ко все большим и большим объектам, то законы поведения такого кол­лектива атомов не воспроизводят поведения одного атома, а дают новый закон — закон Ньютона, который уже воспроизводит сам себя, начиная с объектов весом в 1 миллионную микрограмма, содержащих еще миллиарды и миллиарды атомов, и вплоть до тел величиной с Землю и даже еще больших.

Вернемся, однако, к центру масс. Часто его называют центром тяжести, так как во многих случаях для силы тяго­тения можно провести точно такие же рассуждения, как и для масс. Если размеры достаточно малы, то силу тяжести можно считать не только пропорциональной массе, но и направленной всюду параллельно некоторой фиксированной линии.

Возьмем тело, в котором сила тяжести действует на каждую из составляющих его частей, a miмасса одной из этих частей. Действующая на нее сила тяжести будет тогда равна произведе­нию mi на g. Возникает вопрос: в какой точке нужно приложить одну-единственную силу, чтобы сбалансировать притяже­ние всего тела так, чтобы оно (если это твердое тело) не вра­щалось? Ответ: сила должна проходить через центр масс. До­казывается это следующим образом. Чтобы тело не вращалось, сумма моментов всех сил должна быть равна нулю, ибо если нет момента сил, то нет и изменения момента количества дви­жения, а поэтому нет и вращения. Таким образом, мы должны подсчитать сумму всех моментов, действующих на все частицы, и посмотреть, какой получится полный момент относительно любой данной оси: он должен быть равен нулю, если ось про­ходит через центр масс. Направив ось х горизонтально, а ось у вертикально, мы найдем, что моменты сил равны силам, на­правленным вниз, умноженным на плечо х (т. е. сила на плечо относительно той оси, для которой измеряется момент силы). Полный же момент равен сумме

t=Smigxi=gSmixi. (19.3)

Чтобы полный момент отсутствовал, сумма Smixi должна быть равна нулю. Но эта сумма равна MX — полной массе, умно­женной на расстояние от оси х до центра масс. Итак, это рас­стояние должно быть равно нулю.

Разумеется, мы провели проверку только для x-направле­ния, однако если мы действительно взяли центр масс, то тело должно быть уравновешено в любом положении, поэтому, по­вернув его на 90°, мы вместо оси х получим ось у. Другими сло­вами, если держать тело за центр масс, то параллельное грави­тационное поле не дает никакого момента сил. Если же объект настолько велик, что становится существенной непараллель­ность сил притяжения, то точку, в которой должна быть при­ложена уравновешивающая сила, описать не просто: она несколько отклоняется от центра масс. Вот почему нужно пом­нить, что центр масс и центр тяжести — разные вещи. Тот факт, что тело, поддерживаемое точно за центр масс, уравновешено в любом положении, имеет еще одно интересное следствие. Если вместо гравитационных сил взять инерционные псевдосилы, возникающие вследствие ускорения, то, чтобы найти точку, уцепившись за которую мы уравновесим все моменты этих сил, можно использовать ту же самую математическую процедуру. Предположим, что мы заключили тело внутрь ящика, который ускоряется вместе со всем его содержимым. Тогда, с точки зре­ния наблюдателя, сидящего в этом ящике, на тело вследствие инерции будет действовать некая эффективная сила. Иначе го­воря, чтобы заставить тело двигаться вместе с ящиком, нужно подталкивать и ускорять его. Эта сила «уравновешивается силой инерции», которая равна массе тела, умноженной на ускорение ящика. Наблюдателю в ящике будет казаться, будто тело на­ходится в однородном гравитационном поле, величина g кото­рого равна ускорению ящика а. Таким образом, инерционные силы, возникающие вследствие ускорения тела, не имеют мо­мента относительно центра масс.

Этот факт имеет очень интересное следствие. В инерционной системе, движущейся без ускорения, момент сил всегда равен скорости изменения момента количества движения. Однако равенство момента силы и скорости изменения момента коли­чества движения остается справедливым даже для ускоряю­щегося тела, если взять ось, проходящую через центр масс. Таким образом, теорема о равенстве момента сил скорости изменения момента количества движения верна в двух случаях: 1) ось фиксирована — в инерциальной системе; 2) ось проходит через центр масс — даже когда тело ускоряется.

– Конец работы –

Эта тема принадлежит разделу:

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

На сайте allrefs.net читайте: "Глава 15 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ"...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Свойства центра масс

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности
Свыше двухсот лет считалось, что урав­нения движения, провозглашенные Ньютоном, правильно описывают природу. Потом в них была обнаружена ошибка. Обнаружена и тут же исправлена. И заметил ошибку, и

Преобразование Лоренца
Когда стало ясно, что с уравнениями физики не все ладится, первым долгом подозрение пало на уравнения электродинамики Максвелла. Они только-только были написаны, им было всего 20 лет от роду; казал

Опыт Майкелъсона— Морли
Мы уже говорили, что в свое время были сделаны попытки определить абсолютную скорость движения Земли сквозь воображаемый «эфир», который, как думали тогда, пропиты­вает собой все пространство. Самы

Преобразование времени
При проверке, согласуется ли идея о сокращении расстоя­ний с фактами, обнаруженными в других опытах, оказывается, что все действительно согласуется, если только считать, что время тоже преобразу

Лоренцево сокращение
Теперь мы вернемся к преобразованию Лоренца (15.3) и попытаемся лучше понять связь между системами координат (х, у, z, t) и (х', у', z', t'). Будем называть их системами

Одновременность
Подобным же образом из-за различия в масштабах времени

Четырехвекторы
Что еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование х и t по форме похоже на преобразование хну, изученное нами в гл. 11, когда мы говорили

Релятивистская динамика
Теперь мы готовы к тому, чтобы с более общей точки зрения исследовать, как преобразования Лоренца изменяют законы механики. [До сих пор мы только объясняли, как изменяются длины и времена, но не об

Связь массы и энергии
Это наблюдение навело Эйнштейна на мысль, что массу тела можно выразить проще, чем по формуле (15.1), если сказать, что масса равна полному содержанию энергии в теле, деленному на с2. Ес

Релятивистская энергия
  § 1. Относительность и «философы» В этой главе мы продолжим обсуждение принципа относительности Эйнштейна — Пуан­каре, его влияния на наши физические воз­з

Парадокс близнецов
Чтобы продолжить наше изучение преобразований Лоренца и релятивистских эффектов, рассмотрим известный «пара­докс» — парадокс близнецов, скажем, Петера и Пауля. Подросши, Пауль улетает на космическо

Преобразование скоростей
Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относите

Релятивистская масса
Из предыдущей главы мы усвоили, что масса тела растет с увеличением его скорости. Но никаких доказательств этого, похожих на те рассуждения с часами, которыми мы обосновали замедление времени, мы н

Релятивистская энергия
Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, ока

Геометрия пространства-времени
Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измере­ниях в двух разных системах отсчета совсем не такая, как можно было ожидать

Пространственно-временные интервалы
Хотя геометрия пространства-времени не обычная (не евклидова), тем не менее эта геометрия очень похожа на евклидову, но в некоторых отношениях весьма своеоб­разная. Если это представление о геометр

Прошедшее, настоящее, будущее
Пространственно-временную область, окружающую данную т

Еще о четырехвекторах
Вернемся опять к аналогии между преобразованием Ло­ренца и вращением пространственных осей. Мы уже убедились, что полезно собирать воедино отличные от координат величины, которые преобразуются так

Алгебра четырехвекторов
Четырехвекторы обозначаются иначе, чем тривекторы. На­пример, тривектор импульса обозначают р. Если хотят дать более детальную запись, то говорят о трех компонентах рх ,pу,

Центр масс
В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не инте­ресовала. В последующих нескольких главах мы изучим применение законов Ньюто

Вращение твердого тела
Поговорим теперь о вращении. Как известно, обычные предметы не вращаются просто так: они колеблются, вибри­руют, изгибаются. Поэтому, чтобы упростить рассуждения, рассмотрим движение несуществующег

Момент количества движения
Хотя до сих пор мы рассматривали только специальный слу­чай твердого тела, свойства момента и его математическое выра­жение интересны даже тогда, когда тело не твердое. Можно доказать очень интерес

Закон сохранения момента количества движения
Посмотрим теперь, что получается в случае большого коли­чества частиц, т. е. когда тело состоит из множества частичек со множеством сил, действующих между ними и извне. Разуме­ется, мы уже знаем, ч

Положение центра масс
Математическая техника вычисления центра масс относится к области курсов математики; там подобные задачи служат хорошими примерами по интегральному исчислению. Но, даже умея интегрировать, полезно

Вычисление момента инерции
Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид    

Кинетическая энергия вращения
Продолжим изучение динамики вращения. При обсуждении а

Моменты сил в трехмерном пространстве
В этой главе мы рассмотрим одно из наи­более замечательных и забавных следствий за­конов механики — поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое оп

Уравнения вращения в векторном виде
Возникает вопрос: можно ли с помощью векторного произ­ведения записать какое-нибудь уравнение физики? Да, конеч­но, с его помощью записываются очень многие уравнения. Сра­зу же видно, например, что

Гироскоп
Вернемся теперь снова к закону сохранения момента коли­чества движения. Его можно продемонстрировать с помощью бы­стро вращающегося колеса, или гироскопа (фиг. 20.1).    

Момент количества движения твердого тела
Прежде чем расстаться с вопросом о вращении в трехмерном пространстве, обсудим еще, хотя бы качественно, некоторые не­очевидные явления, возникающие при трехмерных вращениях,

Линейные дифференциальные уравнения
Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дел

Гармонический осциллятор
Пожалуй, простейшей механической системой, движение ко

Гармоническое движение и движение по окружности
Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движе

Начальные условия
Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка р

Колебания под действием внешней силы
Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением md2x/dt2=-kx+F(t).

Сложение и умножение
Изучая осциллятор, нам придется восполь­зоваться одной из наиболее замечательных, по­жалуй самой поразительной из формул, какие можно найти в математике. Физик обычно рас­правляется с этой формулой

Шаг в сторону и обобщение
Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии

Приближенное вычисление иррациональных чисел
Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10Ö2 . Ответ в принципе очень прост. Возьмем вместо Ö2

Комплексные числа
Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный ко­рень из -1? Предположим, что это х, тогда х2=-1.

Комплексные числа и гармоническое движение
Мы снова будем говорить в этой главе о гармоническом осцилляторе, особенно об ос­цилляторе, на который действует внешняя си­ла. Для анализа этих задач нужно развить новую технику. В предыдущей глав

Вынужденные колебания с торможением
Итак, мы можем решить задачу о колебательном движении, пользуясь изящной математикой. Однако изящество немногого стоит, когда задача и так решается просто; математику на­до использовать тогда, когд

Электрический резонанс
Простейшие и самые широкие технические применения резо­нанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элемен

Резонанс в природе
Хотя мы детально разобрали вопрос о резонансе в электри­ческих цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеб

Энергия осциллятора
Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцил­ляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колеба­ний. Давайте займе

Затухающие колебания
Вернемся к основной теме — переходным решениям. Пе­

Переходные колебания в электрических цепях
Посмотрим, как выглядят переходные колебания. Для этого соберем цепь, изображенную на фиг. 24.2.

Линейные дифференциальные уравнения
В этой главе мы снова вернемся к некоторым аспектам на

Суперпозиция решений
Перейдем теперь к другой интересной проблеме. Предполо­жим, что нам задана какая-нибудь внешняя сила Fa (например, периодическая сила с частотой w=wа

Колебания в линейных системах
Давайте вспомним, о чем мы говорили в нескольких послед­них главах. Физику колебательных движений очень легко за­темнить математикой. На самом-то деле здесь физика очень про­ста, и если на минуту з

Аналогии в физике
Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналоги

Последовательные и параллельные сопротивления
Обсудим, наконец, еще один важный вопрос, хотя он не сов­сем подходит по теме. Что делать с электрической цепью, если в ней много элементов? Например, когда индуктивность, сопротив­ление и емкость

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги