рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Комплексные числа

Комплексные числа - раздел Образование, СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ Хотя Мы Хорошо Поработали, Все-Таки Есть Еще Уравнения, Которые Нам Не...

Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный ко­рень из -1? Предположим, что это х, тогда х2=-1. Нет ни ра­ционального, ни иррационального числа, квадрат которого был бы равен -1. Придется снова пополнить запас чисел. Предполо­жим, что уравнение х2=-1 все же имеет решение, и обозначим это решение буквой i; число i имеет пока только одно свойство: будучи возведенным в квадрат, оно дает -1. Вот пока и все, что можно о нем сказать. Однако уравнение х2=-1 имеет два корня. Буквой i мы обозначили один из корней, но кто-нибудь может сказать: «А я предпочитаю иметь дело с корнем -i; моя буква i просто минус ваша i». Возразить ему нечего, пото­му что число i определяется соотношением i2=-1; это соотно­шение останется верным, если изменить знак i. Значит, любое уравнение, содержащее какое-то количество i, останется вер­ным, если сменить знаки у всех i. Такая операция называется комплексным сопряжением. Далее, ничто не мешает нам полу­чать новые числа вот так: сложить i несколько раз, умножить i на какое-нибудь наше старое число, прибавить результат умно­жения к старому числу и т. д. Все это можно сделать, не на­рушая ранее установленных правил. Таким образом мы при­ходим к числам, которые можно записать в виде p+iq, где p и q — числа, с которыми мы имели дело ранее, их называют действительными числами. Число i называют мнимой единицей, а произведение действительного числа на мнимую единицу — чисто мнимым числом. Самое общее число а имеет вид a=p+iq, и его называют комплексным числом. Обращаться с комплекс­ными числами несложно; например, нам надо вычислить произ­ведение (r+is)(p+q). Вспомнив о правилах, мы получим

(r+is)(p+iq)=rp+r(iq)+(is)p+(is)(iq)=rp+i(rq)+i(sp)+(ii)(sq)=(rp-sq)+i(rq+sp), (22.4)

потому что ii=i2=-1. Теперь мы получили общее выражение для чисел, удовлетворяющих правилам (22.1).

Умудренные опытом, полученным в предыдущих разделах, вы скажете: «Рано говорить об общем выражении, надо еще оп­ределить, например, возведение в мнимую степень, а потом мож­но придумать много алгебраических уравнений, ну хотя бы x6+3x2=-2, для решения которых потребуются новые числа». В том-то и дело, что, кроме действительных чисел, достаточно изобрести только одно число — квадратный корень из -1, после этого можно решить любое алгебраическое уравнение! Эту удивительную вещь должны доказывать уже математики. Дока­зательство очень красиво, очень интересно, но далеко не само­очевидно. Действительно, казалось бы, естественнее всего ожи­дать, что по мере продвижения в дебри алгебраических уравнений придется изобретать снова, снова и снова. Но самое чудесное, что больше ничего не надо изобретать. Это последнее изобре­тение. Изобретя комплексные числа, мы установим правила, по которым с этими числами надо обращаться, и больше ничего изобретать не будем. Мы научимся возводить комплексные числа в комплексную степень и выражать решение любого алгебраи­ческого уравнения в виде конечной комбинации уже известных нам символов. К новым числам это не приведет. Например, квадратный корень из i, или ii— опять те же комплексные числа. Сейчас мы рассмотрим это подробнее.

Мы уже знаем, как надо складывать и умножать комплекс­ные числа; сумма двух комплексных чисел (р+iq)+(r+is) — это число (p+r)+i(q+s). Но вот возведение комплексных чисел в комплексную степень — уже задача потруднее. Однако она оказывается не труднее задачи о возведении в комплексную сте­пень действительных чисел. Посмотрим поэтому, как возводит­ся в комплексную степень число 10, не в иррациональную, а комплексную; нам надо знать число 10(r+is). Правила (22.1) и (22.2) несколько упрощают задачу

10(r+is)=10r10is (22,5)

Мы знаем, как вычислить 10r, перемножить числа мы тоже умеем, не умеем только вычислить 10is. Предположим, что это комплексное число x+iy. Задача: дано s, найти х и у. Если

10is=x+ iy,

то должно быть верным и комплексно сопряженное уравнение

l0-is=x-iy,

(Некоторые вещи можно получить и без вычислений, надо про­сто использовать правила.) Перемножая эти равенства, можно получить еще один интересный результат

10is10-is=100=1=(x+iy)(x-iy)=x2+y2 (22.6)

Если мы каким-то образом найдем х, то определить у будет очень легко.

Однако как все-таки возвести 10 в мнимую степень? Где искать помощи? Правила нам уже не помогут, но утешает вот что: если удастся возвести 10 в какую-нибудь одну мнимую степень, то ничего не стоит возвести 10 уже в любую степень. Если из­вестно 10is для одного значения s, то вычисление в случае вдвое большего s сводится к возведению в квадрат и т. д. Но как же возвести 10 в хотя бы одну мнимую степень? Для этого сделаем дополнительное предположение; его, конечно, нельзя ставить в один ряд с правилами (22.1) и (22.2), но оно приведет к разумным результатам и позволит нам шагнуть далеко впе­ред. Предположим, что «закон» 10e=1+2,3025e (когда e очень мало) верен не только для действительных, но и для комплекс­ных e. Если это так, то 10is=l +2,3025•is при s®0. Предполагая, что s очень мало (скажем, равно 1/1024), мы получаем хорошее приближение числа 10is.

Теперь можно составить таблицу, которая позволит вычис­лить все мнимые степени 10, т. е. найти числа x и y. Надо посту­пить так. Начнем с показателя 1/1024, который мы считаем равным примерно 1+2,3025 i/1024. Тогда

10i/1024=1,00000+0,0022486i. (22.7)

Умножая это число само на себя много раз, мы дойдем до сте­пеней более высоких. Мы просто-напросто перевернули про­цедуру составления таблицы логарифмов и, вычислив квадрат, 4-ю степень, 8-ю степень и т. д. числа (22.7), составили табл. 22.3. Интересно, что сначала все числа х были положительными, а потом вдруг появилось отрицательное число. Это значит, что существует число s, для которого действительная часть 10is равна нулю. Значение у в этом случае равно i, т. е. 10is=i, или is=log10i. В качестве примера (см. табл. 22..3) вычислим с ее помощью Iog10i. Процедура поиска Iog10i в точности повторяет то, что мы делали, вычисляя log102.

Произведение каких чисел из табл. 22.3 равно чисто мнимому числу? После нескольких проб и ошибок мы найдем, что лучше всего умножить «512» на «128». Их произведение равно 0,13056+0,99144i. Приглядевшись к правилу умножения ком­плексных чисел, можно понять, что надежду на успех сулит ум­ножение этого числа на число, мнимая часть которого прибли­зительно равна действительной части нашего числа. Мнимая часть «64» равна 0,14349, что довольно близко к 0,13056. Произведение этих чисел равно -0,01350+0,99993i. Мы пе­рескочили через нуль, поэтому результат нужно разделить на 0,99996+0,00900 i. Как это сделать? Изменим знак i и умно­жим на 0,99996-0,00900 i (ведь x2+y2=1). В конце концов обнаружим, что если возвести 10 в степень i(1/1024) (512+128 + +64-4-2+0,20) или 698,20i/1024, то получится мнимая единица. Таким образом, Iog10i=0,068226i.

Таблица 22.3 • последовательное: вычисление квадратов

10i/1024 =1+0,0022486i

 

 


 


§ 6. Мнимые экспоненты

 

 

Фиг. 22.1. Вещественная и мнимая части функции 10is.

 

Чтобы лучше понять, что такое число в мнимой степени, вычислим последовательные степени десяти. Мы не будем каж­дый раз удваивать степень, чтобы не повторять табл. 22.3, и по­смотрим, что случится с действительной частью после того, как она станет отрицательной. Результат можно увидеть в табл. 22.4.

В этой таблице собраны последовательные произведения чис­ла 10i/8. Видно, что x уменьшается, проходит через нуль, дости­гает почти -1 (в промежутке между р=10 и р=11 величина точно равна -1) и возвращается назад. Точно так же величина у ходит взад-вперед.

Точки на фиг. 22.1 соответствуют числам, приведенным в табл. 22.4, а соединяющие их линии помогают следить за из­менением х и у. Видно, что числа х и у осциллируют; 10is повторяет себя. Легко объяснить, почему так происходит.

Таблица 22.4 • ПОСЛЕДОВАТЕЛЬНЫЕ ПРОИЗВЕДЕНИЯ ЧИСЛА 10i/8

 


Ведь i в четвертой степени — это i2 в квадрате. Это число равно единице; следовательно, если 100,68i равно i, то, возведя это число в четвертую степень, т. е. вычислив 102,72i, мы получим +1. Если нужно получить, например, 103,00i, то нужно умно­жить 102,72i на 100,28i. Иначе говоря, функция 10is повторяется, имеет период. Мы уже знаем, как выглядят такие кривые! Они похожи на график синуса или косинуса, и мы назовем их на время алгебраическим синусом и алгебраическим косинусом. Теперь перейдем от основания 10 к натуральному основанию. Это только изменит масштаб горизонтальной оси; мы обозначим 2,3025s через t и напишем 10is=eit, где t — действительное число. Известно, что eit=x+iy, и мы запишем это число в виде

eit=cost+isint. (22.8)

Каковы свойства алгебраического косинуса cost и алгебраи­ческого синуса sint? Прежде всего x2+y2=1; это мы уже до­казали, и это верно для любого основания, будь то 10 или е. Следовательно, cos2t+sin2t=l. Мы знаем, что eit=1+it для малых t; значит, если t — близкое к нулю число, то cost близок к единице, a sint близок к t. Продолжая дальше, мы придем к выводу, что все свойства этих замечательных функций, получаю­щихся в результате возведения в мнимую степень, в точности совпадают со свойствами тригонометрического синуса и триго­нометрического косинуса.

А как обстоит дело с периодом? Давайте найдем его. В ка­кую степень надо возвести е, чтобы получить i? Иными словами, чему равен логарифм i по основанию е? Мы вычислили уже ло­гарифм i по основанию 10; он равен 0,68226i; чтобы перейти к основанию е, мы умножим это число на 2,3025 и получим 1,5709. Это число можно назвать «алгебраическим p/2». Но по­глядите-ка, оно отличается от настоящего p/2 всего лишь послед­ним десятичным знаком, и это просто-напросто следствие на­ших приближений при вычислениях! Таким образом, чисто ал­гебраически возникли две новые функции — синус и косинус; они принадлежат алгебре и только алгебре. Мы пошли по их сле­дам и обнаружили, что это те же самые функции, которые так естественно возникают в геометрии. Мы отыскали мост между алгеброй и геометрией.

Подводя итог нашим поискам, мы напишем одну из самых замечательных формул математики

eiq=cosq+isinq. (22.9)

Вот она, наша жемчужина.

Связь между алгеброй и геометрией можно использовать для изображения комплексных чисел на плоскости; точка на плос­кости определяется координатами х и у (фиг. 22.2).

 

 


Фиг. 22.2. Комплексное число как точка на плоскости.

 

Представим каждое комплексное число в виде x+iy. Если расстояние точки от начала координат обозначить через r, а угол радиуса-вектора точки с осью xчерез q, то выражение x+iy можно представить в виде rei9. Это следует из геометрических соотношений между х, у, r и q. Таким образом, мы объединили алгебру и геометрию. Начиная эту главу, мы знали только целые числа и умели их считать. Зато у нас была небольшая идея о могуществе шага в сторону и обобщения. Используя алгебраические «законы», или свойства чисел, сведенные в уравнения (22.1), и определения обратных операций (22.2), мы смогли создать не только новые числа, но и такие полезные вещи, как таблицы логарифмов, степеней и тригонометрические функции (они возникли при возведении действительных чисел в мнимые степени), и все это удалось сделать, извлекая много раз квадратный корень из десяти!

 

 

– Конец работы –

Эта тема принадлежит разделу:

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

На сайте allrefs.net читайте: "Глава 15 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ"...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Комплексные числа

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности
Свыше двухсот лет считалось, что урав­нения движения, провозглашенные Ньютоном, правильно описывают природу. Потом в них была обнаружена ошибка. Обнаружена и тут же исправлена. И заметил ошибку, и

Преобразование Лоренца
Когда стало ясно, что с уравнениями физики не все ладится, первым долгом подозрение пало на уравнения электродинамики Максвелла. Они только-только были написаны, им было всего 20 лет от роду; казал

Опыт Майкелъсона— Морли
Мы уже говорили, что в свое время были сделаны попытки определить абсолютную скорость движения Земли сквозь воображаемый «эфир», который, как думали тогда, пропиты­вает собой все пространство. Самы

Преобразование времени
При проверке, согласуется ли идея о сокращении расстоя­ний с фактами, обнаруженными в других опытах, оказывается, что все действительно согласуется, если только считать, что время тоже преобразу

Лоренцево сокращение
Теперь мы вернемся к преобразованию Лоренца (15.3) и попытаемся лучше понять связь между системами координат (х, у, z, t) и (х', у', z', t'). Будем называть их системами

Одновременность
Подобным же образом из-за различия в масштабах времени

Четырехвекторы
Что еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование х и t по форме похоже на преобразование хну, изученное нами в гл. 11, когда мы говорили

Релятивистская динамика
Теперь мы готовы к тому, чтобы с более общей точки зрения исследовать, как преобразования Лоренца изменяют законы механики. [До сих пор мы только объясняли, как изменяются длины и времена, но не об

Связь массы и энергии
Это наблюдение навело Эйнштейна на мысль, что массу тела можно выразить проще, чем по формуле (15.1), если сказать, что масса равна полному содержанию энергии в теле, деленному на с2. Ес

Релятивистская энергия
  § 1. Относительность и «философы» В этой главе мы продолжим обсуждение принципа относительности Эйнштейна — Пуан­каре, его влияния на наши физические воз­з

Парадокс близнецов
Чтобы продолжить наше изучение преобразований Лоренца и релятивистских эффектов, рассмотрим известный «пара­докс» — парадокс близнецов, скажем, Петера и Пауля. Подросши, Пауль улетает на космическо

Преобразование скоростей
Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относите

Релятивистская масса
Из предыдущей главы мы усвоили, что масса тела растет с увеличением его скорости. Но никаких доказательств этого, похожих на те рассуждения с часами, которыми мы обосновали замедление времени, мы н

Релятивистская энергия
Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, ока

Геометрия пространства-времени
Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измере­ниях в двух разных системах отсчета совсем не такая, как можно было ожидать

Пространственно-временные интервалы
Хотя геометрия пространства-времени не обычная (не евклидова), тем не менее эта геометрия очень похожа на евклидову, но в некоторых отношениях весьма своеоб­разная. Если это представление о геометр

Прошедшее, настоящее, будущее
Пространственно-временную область, окружающую данную т

Еще о четырехвекторах
Вернемся опять к аналогии между преобразованием Ло­ренца и вращением пространственных осей. Мы уже убедились, что полезно собирать воедино отличные от координат величины, которые преобразуются так

Алгебра четырехвекторов
Четырехвекторы обозначаются иначе, чем тривекторы. На­пример, тривектор импульса обозначают р. Если хотят дать более детальную запись, то говорят о трех компонентах рх ,pу,

Центр масс
В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не инте­ресовала. В последующих нескольких главах мы изучим применение законов Ньюто

Вращение твердого тела
Поговорим теперь о вращении. Как известно, обычные предметы не вращаются просто так: они колеблются, вибри­руют, изгибаются. Поэтому, чтобы упростить рассуждения, рассмотрим движение несуществующег

Момент количества движения
Хотя до сих пор мы рассматривали только специальный слу­чай твердого тела, свойства момента и его математическое выра­жение интересны даже тогда, когда тело не твердое. Можно доказать очень интерес

Закон сохранения момента количества движения
Посмотрим теперь, что получается в случае большого коли­чества частиц, т. е. когда тело состоит из множества частичек со множеством сил, действующих между ними и извне. Разуме­ется, мы уже знаем, ч

Свойства центра масс
В предыдущей главе мы установили факт существования некоторой замечательной точки, называемой центром масс. Она замечательна тем, что если на частицы, образующие тело (неважно, будет ли оно

Положение центра масс
Математическая техника вычисления центра масс относится к области курсов математики; там подобные задачи служат хорошими примерами по интегральному исчислению. Но, даже умея интегрировать, полезно

Вычисление момента инерции
Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид    

Кинетическая энергия вращения
Продолжим изучение динамики вращения. При обсуждении а

Моменты сил в трехмерном пространстве
В этой главе мы рассмотрим одно из наи­более замечательных и забавных следствий за­конов механики — поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое оп

Уравнения вращения в векторном виде
Возникает вопрос: можно ли с помощью векторного произ­ведения записать какое-нибудь уравнение физики? Да, конеч­но, с его помощью записываются очень многие уравнения. Сра­зу же видно, например, что

Гироскоп
Вернемся теперь снова к закону сохранения момента коли­чества движения. Его можно продемонстрировать с помощью бы­стро вращающегося колеса, или гироскопа (фиг. 20.1).    

Момент количества движения твердого тела
Прежде чем расстаться с вопросом о вращении в трехмерном пространстве, обсудим еще, хотя бы качественно, некоторые не­очевидные явления, возникающие при трехмерных вращениях,

Линейные дифференциальные уравнения
Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дел

Гармонический осциллятор
Пожалуй, простейшей механической системой, движение ко

Гармоническое движение и движение по окружности
Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движе

Начальные условия
Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка р

Колебания под действием внешней силы
Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением md2x/dt2=-kx+F(t).

Сложение и умножение
Изучая осциллятор, нам придется восполь­зоваться одной из наиболее замечательных, по­жалуй самой поразительной из формул, какие можно найти в математике. Физик обычно рас­правляется с этой формулой

Шаг в сторону и обобщение
Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии

Приближенное вычисление иррациональных чисел
Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10Ö2 . Ответ в принципе очень прост. Возьмем вместо Ö2

Комплексные числа и гармоническое движение
Мы снова будем говорить в этой главе о гармоническом осцилляторе, особенно об ос­цилляторе, на который действует внешняя си­ла. Для анализа этих задач нужно развить новую технику. В предыдущей глав

Вынужденные колебания с торможением
Итак, мы можем решить задачу о колебательном движении, пользуясь изящной математикой. Однако изящество немногого стоит, когда задача и так решается просто; математику на­до использовать тогда, когд

Электрический резонанс
Простейшие и самые широкие технические применения резо­нанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элемен

Резонанс в природе
Хотя мы детально разобрали вопрос о резонансе в электри­ческих цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеб

Энергия осциллятора
Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцил­ляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колеба­ний. Давайте займе

Затухающие колебания
Вернемся к основной теме — переходным решениям. Пе­

Переходные колебания в электрических цепях
Посмотрим, как выглядят переходные колебания. Для этого соберем цепь, изображенную на фиг. 24.2.

Линейные дифференциальные уравнения
В этой главе мы снова вернемся к некоторым аспектам на

Суперпозиция решений
Перейдем теперь к другой интересной проблеме. Предполо­жим, что нам задана какая-нибудь внешняя сила Fa (например, периодическая сила с частотой w=wа

Колебания в линейных системах
Давайте вспомним, о чем мы говорили в нескольких послед­них главах. Физику колебательных движений очень легко за­темнить математикой. На самом-то деле здесь физика очень про­ста, и если на минуту з

Аналогии в физике
Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналоги

Последовательные и параллельные сопротивления
Обсудим, наконец, еще один важный вопрос, хотя он не сов­сем подходит по теме. Что делать с электрической цепью, если в ней много элементов? Например, когда индуктивность, сопротив­ление и емкость

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги