рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Колебания в линейных системах

Колебания в линейных системах - раздел Образование, СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ Давайте Вспомним, О Чем Мы Говорили В Нескольких Послед­них Главах. Физику Ко...

Давайте вспомним, о чем мы говорили в нескольких послед­них главах. Физику колебательных движений очень легко за­темнить математикой. На самом-то деле здесь физика очень про­ста, и если на минуту забыть математику, то мы увидим, что понимаем почти все, что происходит в колебательной системе.

 

Во-первых, если мы имеем дело только с пружинкой и грузи­ком, то легко понять, почему система колеблется — это следст­вие инерции. Мы оттянули массу вниз, а сила тянет ее назад; наступает момент, когда сила равна нулю, но грузик не может остановиться мгновенно: у него есть импульс, который застав­ляет его двигаться. Теперь пружинка тянет грузик в другую сторону, грузик начинает двигаться взад и вперед. Итак, если бы не было трения, то, несомненно, получилось бы колебатель­ное движение, и так оно и есть на самом деле. Но достаточно незначительного трения, чтобы размах следующих колебаний стал меньше, чем раньше.

Что случится потом, после многих циклов? Это зависит от ха­рактера и величины трения. Предположим, что мы придумали такое устройство, что при изменении амплитуды сила трения оказывается пропорциональной другим силам — инерции и натяжению. Иначе говоря, при малых колебаниях трение сла­бее, чем при колебаниях с большой амплитудой. Обычно сила трения таким свойством не обладает, так что можно предполо­жить, что в нашем случае действуют силы трения особого рода — силы, пропорциональные скорости; тогда для больших колеба­ний эти силы будут больше, а для малых — меньше. Если у нас именно такой вид трения, то в конце каждого цикла система будет находиться в тех же условиях, что и в начале цикла, только всего будет меньше. Все силы будут меньше в тех же пропорциях: сила пружинки немного ослабнет, инерциальные эффекты будут меньше. Ведь теперь и ускорения грузика будут меньше, и сила трения ослабеет (об этом мы позаботились, соз­давая наше устройство). Если бы мы имели дело с такими си­лами трения, то увидели бы, что каждое колебание в точности повторяет первое, только амплитуда его стала меньше. Если после первого цикла амплитуда составляла, например, 90% пер­воначальной, то после второго цикла она будет равна 90% от 90% и т. д., т. е. размах колебаний после каждого цикла умень­шается в одинаковое число раз. Кривая, ведущая себя таким образом,— это экспоненциальная функция. Она изменяется в одинаковое число раз на любых интервалах одинаковой длины. Иначе говоря, если отношение амплитуды одного цикла к амплитуде предыдущего равно а, то такое же отношение для вто­рого цикла равно а2, затем а3 и т. д. Таким образом, амплитуда колебаний после n циклов равна

А=А0аn. (25.10)

Но, конечно, n~t, поэтому общее решение будет произведением какой-нибудь периодической функции sinwt или соswt на ам­плитуду, которая ведет себя примерно как bt. Если b положи­тельно и меньше единицы, то его можно записать в виде е-c.

Вот почему решение задачи о колебаниях при учете трения бу­дет выглядеть примерно как

ехр(-ct)coswt. Это очень просто.

Что случится, если трение не будет таким искусственным; например обычное трение о стол, когда сила трения по­стоянна по величине, не зависит от размаха колебаний и меняет свое направление каждые полпериода? Тогда уравнения движе­ния станут нелинейными; решить их трудно, поэтому придется прибегнуть к описанному в гл. 2 численному решению или рас­сматривать по отдельности каждую половину периода. Самым мощным, конечно, является численный метод; с его помощью можно решить любое уравнение. Математический анализ ис­пользуется лишь для решения простых задач.

Надо сказать, что математический анализ вообще не такое уж могучее средство исследования; с его помощью можно ре­шить лишь простейшие возможные уравнения. Как только урав­нение чуть усложняется, его уже нельзя решить аналитически. Численный же метод, с которым мы познакомились в начале курса, позволяет решить любое уравнение, представляющее физический интерес.

Пойдем дальше. Что можно сказать о резонансной кривой? Как объяснить резонанс? Представим сначала, что трения нет и мы имеем дело с чем-то, что может колебаться само по себе. Если подталкивать маятник каждый раз, когда он пройдет мимо нас, то очень скоро маятник начнет раскачиваться, как сумас­шедший. А что случится, если мы закроем глаза и, не следя за маятником, начнем толкать его с произвольной частотой, с ка­кой захотим? Иногда наши толчки, попадая не в ритм, будут замедлять маятник. Но когда нам посчастливится найти вер­ный темп, каждый толчок будет достигать маятника в нужный момент и он будет подниматься все выше, выше и выше. Таким образом, если не будет трения, то для зависимости амплитуды от частоты внешней силы мы получим кривую, которая выгля­дит, как сплошная линия на фиг. 25.5.

 


 

Фиг. 25.5. Резонансная кривая, отражающая разнообразные виды трения.

 

Качественно мы по­няли резонансную кривую; чтобы найти ее точные очертания, пожалуй, придется прибегнуть к помощи математики. Кривая стремится к бесконечности, если w®w0, где w0— собственная частота осциллятора.

Предположите, что существует слабое трение. Тогда при не­значительных отклонениях осциллятора влияние трения сказы­вается слабо и резонансная кривая вдали от максимума не из­меняется. Однако около резонанса кривая уже не уходит в бесконечность, а просто поднимается выше, чем в остальных ме­стах. Когда амплитуда колебаний достигает максимума, работа, совершенная нами в момент толчка, полностью компенсирует потери энергии на трение за период. Таким образом, вершина кривой закруглена, и она уже не уходит в бесконечность. Чем больше трение, тем больше сглажена вершина кривой. Кто-нибудь может сказать: «Я думал, что ширины резонансных кривых зависят от трения». Так можно подумать, потому что ре­зонансные кривые рисуют, принимая за единицу масштаба вер­шину кривой. Однако если нарисовать все кривые в одном мас­штабе (это прояснит дело больше, чем изучение математических выражений), то окажется, что трение срезает вершину кривой! Если трение мало, мы можем подняться высоко по резонансной кривой; когда трение сгладит кривую, мы на том же интервале частот поднимаемся на меньшую высоту, и это создает ощу­щение ширины. Таким образом, чем выше пик кривой, тем ближе к максимуму точки, где высота кривой равна половине максимума.

Наконец, подумаем, что произойдет при очень большом тре­нии. Ясно, что, если трение очень велико, система вообще не осциллирует. Энергии пружинки едва-едва хватит на борьбу с силами трения, и грузик будет медленно ползти к положению равновесия.

– Конец работы –

Эта тема принадлежит разделу:

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

На сайте allrefs.net читайте: "Глава 15 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ"...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Колебания в линейных системах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности
Свыше двухсот лет считалось, что урав­нения движения, провозглашенные Ньютоном, правильно описывают природу. Потом в них была обнаружена ошибка. Обнаружена и тут же исправлена. И заметил ошибку, и

Преобразование Лоренца
Когда стало ясно, что с уравнениями физики не все ладится, первым долгом подозрение пало на уравнения электродинамики Максвелла. Они только-только были написаны, им было всего 20 лет от роду; казал

Опыт Майкелъсона— Морли
Мы уже говорили, что в свое время были сделаны попытки определить абсолютную скорость движения Земли сквозь воображаемый «эфир», который, как думали тогда, пропиты­вает собой все пространство. Самы

Преобразование времени
При проверке, согласуется ли идея о сокращении расстоя­ний с фактами, обнаруженными в других опытах, оказывается, что все действительно согласуется, если только считать, что время тоже преобразу

Лоренцево сокращение
Теперь мы вернемся к преобразованию Лоренца (15.3) и попытаемся лучше понять связь между системами координат (х, у, z, t) и (х', у', z', t'). Будем называть их системами

Одновременность
Подобным же образом из-за различия в масштабах времени

Четырехвекторы
Что еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование х и t по форме похоже на преобразование хну, изученное нами в гл. 11, когда мы говорили

Релятивистская динамика
Теперь мы готовы к тому, чтобы с более общей точки зрения исследовать, как преобразования Лоренца изменяют законы механики. [До сих пор мы только объясняли, как изменяются длины и времена, но не об

Связь массы и энергии
Это наблюдение навело Эйнштейна на мысль, что массу тела можно выразить проще, чем по формуле (15.1), если сказать, что масса равна полному содержанию энергии в теле, деленному на с2. Ес

Релятивистская энергия
  § 1. Относительность и «философы» В этой главе мы продолжим обсуждение принципа относительности Эйнштейна — Пуан­каре, его влияния на наши физические воз­з

Парадокс близнецов
Чтобы продолжить наше изучение преобразований Лоренца и релятивистских эффектов, рассмотрим известный «пара­докс» — парадокс близнецов, скажем, Петера и Пауля. Подросши, Пауль улетает на космическо

Преобразование скоростей
Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относите

Релятивистская масса
Из предыдущей главы мы усвоили, что масса тела растет с увеличением его скорости. Но никаких доказательств этого, похожих на те рассуждения с часами, которыми мы обосновали замедление времени, мы н

Релятивистская энергия
Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, ока

Геометрия пространства-времени
Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измере­ниях в двух разных системах отсчета совсем не такая, как можно было ожидать

Пространственно-временные интервалы
Хотя геометрия пространства-времени не обычная (не евклидова), тем не менее эта геометрия очень похожа на евклидову, но в некоторых отношениях весьма своеоб­разная. Если это представление о геометр

Прошедшее, настоящее, будущее
Пространственно-временную область, окружающую данную т

Еще о четырехвекторах
Вернемся опять к аналогии между преобразованием Ло­ренца и вращением пространственных осей. Мы уже убедились, что полезно собирать воедино отличные от координат величины, которые преобразуются так

Алгебра четырехвекторов
Четырехвекторы обозначаются иначе, чем тривекторы. На­пример, тривектор импульса обозначают р. Если хотят дать более детальную запись, то говорят о трех компонентах рх ,pу,

Центр масс
В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не инте­ресовала. В последующих нескольких главах мы изучим применение законов Ньюто

Вращение твердого тела
Поговорим теперь о вращении. Как известно, обычные предметы не вращаются просто так: они колеблются, вибри­руют, изгибаются. Поэтому, чтобы упростить рассуждения, рассмотрим движение несуществующег

Момент количества движения
Хотя до сих пор мы рассматривали только специальный слу­чай твердого тела, свойства момента и его математическое выра­жение интересны даже тогда, когда тело не твердое. Можно доказать очень интерес

Закон сохранения момента количества движения
Посмотрим теперь, что получается в случае большого коли­чества частиц, т. е. когда тело состоит из множества частичек со множеством сил, действующих между ними и извне. Разуме­ется, мы уже знаем, ч

Свойства центра масс
В предыдущей главе мы установили факт существования некоторой замечательной точки, называемой центром масс. Она замечательна тем, что если на частицы, образующие тело (неважно, будет ли оно

Положение центра масс
Математическая техника вычисления центра масс относится к области курсов математики; там подобные задачи служат хорошими примерами по интегральному исчислению. Но, даже умея интегрировать, полезно

Вычисление момента инерции
Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид    

Кинетическая энергия вращения
Продолжим изучение динамики вращения. При обсуждении а

Моменты сил в трехмерном пространстве
В этой главе мы рассмотрим одно из наи­более замечательных и забавных следствий за­конов механики — поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое оп

Уравнения вращения в векторном виде
Возникает вопрос: можно ли с помощью векторного произ­ведения записать какое-нибудь уравнение физики? Да, конеч­но, с его помощью записываются очень многие уравнения. Сра­зу же видно, например, что

Гироскоп
Вернемся теперь снова к закону сохранения момента коли­чества движения. Его можно продемонстрировать с помощью бы­стро вращающегося колеса, или гироскопа (фиг. 20.1).    

Момент количества движения твердого тела
Прежде чем расстаться с вопросом о вращении в трехмерном пространстве, обсудим еще, хотя бы качественно, некоторые не­очевидные явления, возникающие при трехмерных вращениях,

Линейные дифференциальные уравнения
Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дел

Гармонический осциллятор
Пожалуй, простейшей механической системой, движение ко

Гармоническое движение и движение по окружности
Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движе

Начальные условия
Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка р

Колебания под действием внешней силы
Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением md2x/dt2=-kx+F(t).

Сложение и умножение
Изучая осциллятор, нам придется восполь­зоваться одной из наиболее замечательных, по­жалуй самой поразительной из формул, какие можно найти в математике. Физик обычно рас­правляется с этой формулой

Шаг в сторону и обобщение
Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии

Приближенное вычисление иррациональных чисел
Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10Ö2 . Ответ в принципе очень прост. Возьмем вместо Ö2

Комплексные числа
Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный ко­рень из -1? Предположим, что это х, тогда х2=-1.

Комплексные числа и гармоническое движение
Мы снова будем говорить в этой главе о гармоническом осцилляторе, особенно об ос­цилляторе, на который действует внешняя си­ла. Для анализа этих задач нужно развить новую технику. В предыдущей глав

Вынужденные колебания с торможением
Итак, мы можем решить задачу о колебательном движении, пользуясь изящной математикой. Однако изящество немногого стоит, когда задача и так решается просто; математику на­до использовать тогда, когд

Электрический резонанс
Простейшие и самые широкие технические применения резо­нанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элемен

Резонанс в природе
Хотя мы детально разобрали вопрос о резонансе в электри­ческих цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеб

Энергия осциллятора
Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцил­ляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колеба­ний. Давайте займе

Затухающие колебания
Вернемся к основной теме — переходным решениям. Пе­

Переходные колебания в электрических цепях
Посмотрим, как выглядят переходные колебания. Для этого соберем цепь, изображенную на фиг. 24.2.

Линейные дифференциальные уравнения
В этой главе мы снова вернемся к некоторым аспектам на

Суперпозиция решений
Перейдем теперь к другой интересной проблеме. Предполо­жим, что нам задана какая-нибудь внешняя сила Fa (например, периодическая сила с частотой w=wа

Аналогии в физике
Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналоги

Последовательные и параллельные сопротивления
Обсудим, наконец, еще один важный вопрос, хотя он не сов­сем подходит по теме. Что делать с электрической цепью, если в ней много элементов? Например, когда индуктивность, сопротив­ление и емкость

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги