рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гармонический осциллятор

Гармонический осциллятор - раздел Образование, СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ ...


Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного рас­тянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равнове­сия (фиг. 21.1).

 

Фиг. 21.1. Грузик, подвешенный на пружинке.

Простой пример гармонического ос­циллятора.

 

Отклонения вверх от положения равновесия мы обозначим через х и предположим, что имеем дело с абсо­лютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна -kx (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умно­женное на массу ускорение должно быть равно -kx

m(d2x/dt2)=-kx. (21.2)

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что k/m = 1. Нам предстоит решить уравнение

d2x/dt2=-x. (21.3)

После этого мы вернемся к уравнению (21.2), в котором k и m содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начи­нали изучать механику. Мы решили его численно [см. вып. 1, уравнение (9.12)], чтобы найти движение. Численным интегри­рованием мы нашли кривую (см. фиг. 9.4, вып. 1), которая пока­зывает, что если частица m в начальный момент выведена из рав­новесия, но покоится, то она возвращается к положению рав­новесия. Мы не следили за частицей после того, как она достиг­ла положения равновесия, но ясно, что она на этом не остано­вится, а будет колебаться (осциллировать). При численном ин­тегрировании мы нашли время возврата в точку равновесия: t=1,570. Продолжительность полного цикла в четыре раза боль­ше: t0=6,28 «сек». Все это мы нашли численным интегрирова­нием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее про­дифференцировать дважды, переходит в себя, умножившись на -1. (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: x=cost. Продифференцируем ее: dx/dt=-sint, a d2x/dt2 =-wt=-x. В начальный момент t=0, x=1, а начальная скорость равна нулю; это как раз те пред­положения, которые мы делали при численном интегрирова­нии. Теперь, зная, что x=cost, найдем точное значение вре­мени, при котором z=0. Ответ: t=p/2, или 1,57108. Мы ошиб­лись раньше в последнем знаке, потому что численное интег­рирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет реше­нием в этом случае? Может быть, мы учтем постоянные k и т, умножив на соответствующий множитель cost? Попробуем. Пусть x=Acost, тогда dx/dt=-Asint и d2t/dt2=-Acost=-x. К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умно­жить решение уравнения на постоянную, то мы снова получим решение. Математически ясно — почему. Если х есть решение уравнения, то после умножения обеих частей уравнения на А производные тоже умножатся на A и поэтому Ах так же хорошо удовлетворит уравнению, как и х. Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ус­корение, в два раза больше прежней будет приобретенная ско­рость и за то же самое время грузик пройдет вдвое большее рас­стояние. Но это вдвое большее расстояние — как раз то самое расстояние, которое надо пройти грузику до положения равно­весия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравне­нием, то независимо от «силы» оно будет развиваться во вре­мени одинаковым образом.

Ошибка пошла нам на пользу — мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравне­ния. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с х надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

x=cosw0t. (21.4)

(Здесь w0 — вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозна­чать особой буквой.) Мы снабдили здесь w индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что w0 соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что dx/dt=-(w0sinw0t и d2x/dt2=-w20wsw0t=-w20x. На­конец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если w20=k/m.


Теперь нужно понять физический смысл w0. Мы знаем, что косинус «повторяется» после того, как угол изменится на 2я. Поэтому x=cosw0t будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на 2p. Величину w0t часто называют фазой движения. Чтобы изменить w0t на 2p, нужно изменить t на t0 (период полного колебания); конечно, t0 находится из уравнения w0t0=2p. Это значит, что w0t0 нужно вычислять для одного цикла, и все будет повто­ряться, если увеличить t на t0; в этом случае мы увеличим фазу на 2p. Таким образом,

 

Значит, чем тяжелее грузик, тем медленнее пружинка будет ко­лебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожест­че, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не го­ворит об амплитуде колебания. Амплитуду колебания, конеч­но, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Реше­ние x=acosw0t соответствует случаю, когда в начальный мо­мент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например улучить момент, когда уравновешенная пружинка покоится (х=0), и резко ударить по грузику; это будет означать, что в момент t=0 пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) — косинус нужно заменить на синус. Бросим в косинус еще один камень: если x=cosw0t—решение, то, войдя в комнату, где качается пружин­ка, в тот момент (назовем его «t=0»), когда грузик проходит через положение равновесия (x=0), мы будем вынуждены заме­нить это решение другим. Следовательно, x=cosw0t не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойст­вом обладает, например, решение x=acosw0(t-t1), где t1 — какая-то постоянная. Далее, можно разложить

cos(w0t+D)=cosw0tcosD-sinw0tsinD и записать

x=Acosw0t+Вsinw0t,

где A=acosD и В=-asinD. Каждую из этих форм можно ис­пользовать для записи общего решения (21.2): любое из су­ществующих в мире решений дифференциального уравнения

d2x/dt2 =-w20x можно записать в виде

x=acosw0(t-t1), (21.6а)

или

x=acos(w0t+D), (21.6б)

или

х=Acosw0t+B sinw0t. (21.6в)

Некоторые из встречающихся в (21.6) величин имеют наз­вания: w0 называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифферен­циальным уравнением. Другие величины уравнением не опре­деляются, а зависят от начальных условий. Постоянная а слу­жит мерой максимального отклонения груза и называется ам­плитудой колебания. Постоянную D иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой w0t+D и говорят, что фаза зависит от времени. Можно сказать, что D — это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным D соответствуют движения с разными фазами. Вот это верно, а называть ли D фазой или нет — уже другой вопрос.

– Конец работы –

Эта тема принадлежит разделу:

СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

На сайте allrefs.net читайте: "Глава 15 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ"...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гармонический осциллятор

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принцип относительности
Свыше двухсот лет считалось, что урав­нения движения, провозглашенные Ньютоном, правильно описывают природу. Потом в них была обнаружена ошибка. Обнаружена и тут же исправлена. И заметил ошибку, и

Преобразование Лоренца
Когда стало ясно, что с уравнениями физики не все ладится, первым долгом подозрение пало на уравнения электродинамики Максвелла. Они только-только были написаны, им было всего 20 лет от роду; казал

Опыт Майкелъсона— Морли
Мы уже говорили, что в свое время были сделаны попытки определить абсолютную скорость движения Земли сквозь воображаемый «эфир», который, как думали тогда, пропиты­вает собой все пространство. Самы

Преобразование времени
При проверке, согласуется ли идея о сокращении расстоя­ний с фактами, обнаруженными в других опытах, оказывается, что все действительно согласуется, если только считать, что время тоже преобразу

Лоренцево сокращение
Теперь мы вернемся к преобразованию Лоренца (15.3) и попытаемся лучше понять связь между системами координат (х, у, z, t) и (х', у', z', t'). Будем называть их системами

Одновременность
Подобным же образом из-за различия в масштабах времени

Четырехвекторы
Что еще можно обнаружить в преобразованиях Лоренца? Любопытно, что в них преобразование х и t по форме похоже на преобразование хну, изученное нами в гл. 11, когда мы говорили

Релятивистская динамика
Теперь мы готовы к тому, чтобы с более общей точки зрения исследовать, как преобразования Лоренца изменяют законы механики. [До сих пор мы только объясняли, как изменяются длины и времена, но не об

Связь массы и энергии
Это наблюдение навело Эйнштейна на мысль, что массу тела можно выразить проще, чем по формуле (15.1), если сказать, что масса равна полному содержанию энергии в теле, деленному на с2. Ес

Релятивистская энергия
  § 1. Относительность и «философы» В этой главе мы продолжим обсуждение принципа относительности Эйнштейна — Пуан­каре, его влияния на наши физические воз­з

Парадокс близнецов
Чтобы продолжить наше изучение преобразований Лоренца и релятивистских эффектов, рассмотрим известный «пара­докс» — парадокс близнецов, скажем, Петера и Пауля. Подросши, Пауль улетает на космическо

Преобразование скоростей
Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относите

Релятивистская масса
Из предыдущей главы мы усвоили, что масса тела растет с увеличением его скорости. Но никаких доказательств этого, похожих на те рассуждения с часами, которыми мы обосновали замедление времени, мы н

Релятивистская энергия
Немного выше мы показали, что зависимость массы от скорости и законы Ньютона приводят к тому, что изменения в кинетической энергии тела, появляющиеся в результате работы приложенных к нему сил, ока

Геометрия пространства-времени
Теория относительности показывает, что связь между местоположением события и моментом, в какой оно происходит, при измере­ниях в двух разных системах отсчета совсем не такая, как можно было ожидать

Пространственно-временные интервалы
Хотя геометрия пространства-времени не обычная (не евклидова), тем не менее эта геометрия очень похожа на евклидову, но в некоторых отношениях весьма своеоб­разная. Если это представление о геометр

Прошедшее, настоящее, будущее
Пространственно-временную область, окружающую данную т

Еще о четырехвекторах
Вернемся опять к аналогии между преобразованием Ло­ренца и вращением пространственных осей. Мы уже убедились, что полезно собирать воедино отличные от координат величины, которые преобразуются так

Алгебра четырехвекторов
Четырехвекторы обозначаются иначе, чем тривекторы. На­пример, тривектор импульса обозначают р. Если хотят дать более детальную запись, то говорят о трех компонентах рх ,pу,

Центр масс
В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не инте­ресовала. В последующих нескольких главах мы изучим применение законов Ньюто

Вращение твердого тела
Поговорим теперь о вращении. Как известно, обычные предметы не вращаются просто так: они колеблются, вибри­руют, изгибаются. Поэтому, чтобы упростить рассуждения, рассмотрим движение несуществующег

Момент количества движения
Хотя до сих пор мы рассматривали только специальный слу­чай твердого тела, свойства момента и его математическое выра­жение интересны даже тогда, когда тело не твердое. Можно доказать очень интерес

Закон сохранения момента количества движения
Посмотрим теперь, что получается в случае большого коли­чества частиц, т. е. когда тело состоит из множества частичек со множеством сил, действующих между ними и извне. Разуме­ется, мы уже знаем, ч

Свойства центра масс
В предыдущей главе мы установили факт существования некоторой замечательной точки, называемой центром масс. Она замечательна тем, что если на частицы, образующие тело (неважно, будет ли оно

Положение центра масс
Математическая техника вычисления центра масс относится к области курсов математики; там подобные задачи служат хорошими примерами по интегральному исчислению. Но, даже умея интегрировать, полезно

Вычисление момента инерции
Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид    

Кинетическая энергия вращения
Продолжим изучение динамики вращения. При обсуждении а

Моменты сил в трехмерном пространстве
В этой главе мы рассмотрим одно из наи­более замечательных и забавных следствий за­конов механики — поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое оп

Уравнения вращения в векторном виде
Возникает вопрос: можно ли с помощью векторного произ­ведения записать какое-нибудь уравнение физики? Да, конеч­но, с его помощью записываются очень многие уравнения. Сра­зу же видно, например, что

Гироскоп
Вернемся теперь снова к закону сохранения момента коли­чества движения. Его можно продемонстрировать с помощью бы­стро вращающегося колеса, или гироскопа (фиг. 20.1).    

Момент количества движения твердого тела
Прежде чем расстаться с вопросом о вращении в трехмерном пространстве, обсудим еще, хотя бы качественно, некоторые не­очевидные явления, возникающие при трехмерных вращениях,

Линейные дифференциальные уравнения
Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дел

Гармоническое движение и движение по окружности
Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движе

Начальные условия
Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка р

Колебания под действием внешней силы
Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением md2x/dt2=-kx+F(t).

Сложение и умножение
Изучая осциллятор, нам придется восполь­зоваться одной из наиболее замечательных, по­жалуй самой поразительной из формул, какие можно найти в математике. Физик обычно рас­правляется с этой формулой

Шаг в сторону и обобщение
Если кто-нибудь, усвоив наши определения, приступит к решению алгебраических уравнений, он быстро натолкнется на неразрешимые задачи. Решите, например, уравнение b=3-5. Вам придется в соответствии

Приближенное вычисление иррациональных чисел
Теперь такой вопрос: как возвести число в иррациональную степень? Например, нам хочется узнать, что такое 10Ö2 . Ответ в принципе очень прост. Возьмем вместо Ö2

Комплексные числа
Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный ко­рень из -1? Предположим, что это х, тогда х2=-1.

Комплексные числа и гармоническое движение
Мы снова будем говорить в этой главе о гармоническом осцилляторе, особенно об ос­цилляторе, на который действует внешняя си­ла. Для анализа этих задач нужно развить новую технику. В предыдущей глав

Вынужденные колебания с торможением
Итак, мы можем решить задачу о колебательном движении, пользуясь изящной математикой. Однако изящество немногого стоит, когда задача и так решается просто; математику на­до использовать тогда, когд

Электрический резонанс
Простейшие и самые широкие технические применения резо­нанс нашел в электричестве. Имеется довольно много устройств, из которых собираются электрические цепи. Их часто называют пассивными элемен

Резонанс в природе
Хотя мы детально разобрали вопрос о резонансе в электри­ческих цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеб

Энергия осциллятора
Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцил­ляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колеба­ний. Давайте займе

Затухающие колебания
Вернемся к основной теме — переходным решениям. Пе­

Переходные колебания в электрических цепях
Посмотрим, как выглядят переходные колебания. Для этого соберем цепь, изображенную на фиг. 24.2.

Линейные дифференциальные уравнения
В этой главе мы снова вернемся к некоторым аспектам на

Суперпозиция решений
Перейдем теперь к другой интересной проблеме. Предполо­жим, что нам задана какая-нибудь внешняя сила Fa (например, периодическая сила с частотой w=wа

Колебания в линейных системах
Давайте вспомним, о чем мы говорили в нескольких послед­них главах. Физику колебательных движений очень легко за­темнить математикой. На самом-то деле здесь физика очень про­ста, и если на минуту з

Аналогии в физике
Продолжая обзор, заметим, что массы и пружинки — это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналоги

Последовательные и параллельные сопротивления
Обсудим, наконец, еще один важный вопрос, хотя он не сов­сем подходит по теме. Что делать с электрической цепью, если в ней много элементов? Например, когда индуктивность, сопротив­ление и емкость

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги