рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ОБЩИЕ СВЕДЕНИЯ

ОБЩИЕ СВЕДЕНИЯ - раздел Образование, ОБЩИЕ СВЕДЕНИЯ О ЛЕТАТЕЛЬНЫХ АППАРАТАХ Системы Управления Самолетом Разделяют На Основные И Вспомогательные. К Основ...

Системы управления самолетом разделяют на основные и вспомогательные. К основным принято относить системы управления рулем высоты, рулем направления и элеронами (рулями крена). Вспомогательное управление — управление двигателями, триммерами рулей, средствами механизации крыла, шасси, тормозами и т. д.

 

Любая из основных систем управления состоит из рычагов управления и проводки, связывающей эти рычаги с рулями. Рычаги; управления отклоняются ногами и руками пилотов. С помощью штурвальной колонки или ручки управления, перемещаемой усилием руки, пилот управляет рулем высоты и элеронами. Рулем направления управляют с помощью ножных педалей. Конструкция управления предусматривает, чтобы отклонение командных рычагов, а следовательно, и изменение положения самолета в пространстве соответствовали естественным рефлексам человека. Например, движение вперед правой ноги, действующей на педаль, вызывает отклонение руля направления и самолета вправо, перемещение штурвальной колонки вперед от себя вызывает снижение самолета и увеличение скорости полета и т. д.

Для облегчения пилотирования и повышения безопасности полета или продолжительном полете управление большинства гражданских самолетов дублируется: делают две пары педалей, две, штурвальные колонки или ручки, которые связаны между собой; так, что отклонение рычага первого пилота вызывает такое же отклонение рычагов у второго пилота. Нормы летней годности гражданских самолетов СССР регламентируют максимальные усилий

Р на рычагах управления. Они не должны превышать по абсолютному значению 350 Н при управлении самолетом по тангажу, 200 Н при управлении по крену и 700 Н при управлении по курсу. Уменьшить усилия и даже полностью снять нагрузку с рычагов управления можно с помощью аэродинамической компенсации. Для преодоления больших, превышающих физические возможности пилотов, усилий на рычагах управления к системе управления подключают гидравлические или электрические приводы, которые называются усилителями (бустерами). В этом случае пило!1 управляет усилителями, которые, в свою очередь, отклоняют рули. Система управления самолетов, предназначенных для длительных полетов, снабжается автопилотом, который облегчает пилотирование. Автопилоты с гироскопическими датчиками углового положения самолета, стабилизируя угол тангажа, обеспечивают движение с постоянной высотой и скоростью, стабилизируя угол крена и рыскания,— движение в заданном направлении. Вопрос о необходимости включения автопилота решает пилот.

Самый важный этап полета — посадка, особенно в условиях плохой видимости или отсутствии видимости земли (туман). Здесь управление по обычным пилотажным приборам невозможно. Ранее посадка в таких условиях запрещалась, и ее производили на ближайшем запасном аэродроме (как правило, в другом городе за сотни километров). В настоящее время созданы устройства, позволяющие совершать автоматическую посадку, без участия пилота и видимости земли. Автоматическое управление посадкой сводится к стабилизации траектории снижения, заданной в вертикальной и горизонтальной плоскостях. Датчиками информации о режиме полета, скорости, высоте и местоположении самолета являются трубка Пито, радиовысотомер, радиомаяки и инерциальная система.

Инерциальная система — это автономное навигационное устройство, построенное по принципу интегрирования ускорений, замеряемых в некоторой стабилизируемой системе координат. Для решения навигационных задач на борту самолета устанавливают бортовую цифровую вычислительную машину (БЦВМ), позволяющую автоматически управлять траекторией полета по заданной программе. Автоматизация систем управления (АСУ) приводит к постепенному отказу от механической проводки управления и переходу к электродистанционным проводным системам. Информация, поступающая в АСУ самолетом, формируется в виде электрических сигналов, которые реализуются приводами управления. При этом система управления значительно упрощается, получается более удобной и гибкой при монтаже на самолете. Устраняется вредное влияние на процесс управления трения, люфта в проводке, упругих деформаций конструкции и т. п. Информация, предназначенная для экипажа самолета, поступает на индикаторы приборной доски.

Управление летательных аппаратов, совершающих полеты на больших высотах в сильно разреженной атмосфере, а также аппаратов вертикального взлета н посадки, когда аэродинамические силы, действующие на самолет, ничтожны и обычные аэродинамические рули не эффективны, осуществляется с помощью струйных или газовых рулей,

дефлекторов и отклоняющихся двигателей.

 

Струйные рули представляют собой реактивные сопла, к которым подводится сжатый воздух от баллонов или от компрессоров двигателя. Управляющими в этом случае являются реактивные силы, возникающие в каждом сопле при истечении из него сжатого воздуха. Газовые рули имеют форму обычного аэродинамического руля, установленного в струе газов, вытекающих из сопла реактивного двигателя. Большая скорость истечения газов позволяет получить значительные силы при сравнительно небольшой площади рулей. Так как рули омываются газами с высокой температурой, то материалом для их изготовления может служить керамика. Дефлектор представляет собой устройство, отклоняющее реактивную струю газов. Изменение направления тяги двигателя путем поворота всей двигательной установки требует громоздких и сложных устройств, обладающих большой массой и инерционностью. Привод рулевых устройств может быть гидравлическим, электрическим и пневматическим.

Управление стабилизатором осуществляется чаще всего гидромоторами через винтовую пару. При этом предусмотрены меры, полностью исключающие возможность самопроизвольного увода стабилизатора. При выключенной системе управления стабилизатор надежно фиксируется в любом положении самотормозящейся резьбой винтовой пары. Стабилизатором управляют из кабины экипажа, а его положение контролируют по индикатору на приборной доске.

– Конец работы –

Эта тема принадлежит разделу:

ОБЩИЕ СВЕДЕНИЯ О ЛЕТАТЕЛЬНЫХ АППАРАТАХ

ТРЕБОВАНИЯ ПРЕДЪЯВЛЯЕМЫЕ К ЛЕТАТЕЛЬНЫМ АППАРАТАМ И ИХ КЛАССИФИКАЦИЯ... Требования предъявляемые к самолетам гражданской авиации определяются... Самолет должен иметь заданные летные характеристики скорость дальность и продолжительность полета скороподъемность...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ОБЩИЕ СВЕДЕНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛЕТАТЕЛЬНЫЕ АППАРАТЫ ТЯЖЕЛЕЕ ВОЗДУХА
К летательным аппаратам тяжелее воздуха относятся самолеты; планеры, самолеты-снаряды, ракеты, вертолеты, автожиры, орнитоптеры. Самолет — летательный аппарат (ЛА) тяжелее

СХЕМЫ САМОЛЕТОВ
Все самолеты можно объединить в группы, различающиеся по следующим конструктивным признакам: числу и расположению крыльев; типу фюзеляжа; форме и расположению оперения; типу, количеству и р

СХЕМЫ ВЕРТОЛЕТОВ
Классифицировать вертолеты можно по различным признакам, например, по виду привода несущего винта, числу винтов, их расположению или по методу компенсации реактивного момента несущего винта (НВ).

АЭРОДИНАМИЧЕСКИЕ ТРУБЫ
Аэродинамика — наука, изучающая законы движения воздуха (газа) и взаимодействие воздушного потока (газа) с находящимися в нем телами. Аэродинамика как самостоятельная наука начала

АТМОСФЕРА
Земля окружена газовой оболочкой, которая создает условия жизни живых существ и защищает их от губительного действия космической радиации, идущей из глубин космоса и Солнца, ультрафиолетовых лучей

ВЯЗКОСТЬ И СЖИМАЕМОСТЬ ВОЗДУХА
На аэродинамические силы большое влияние оказывает вязкость, а пр больших скоростях полета и сжимаемость воздуха. Под вязкостью понимают спсобность воздуха оказывать сопротивление относительному пе

АЭРОДИНАМИЧЕСКИЙ НАГРЕВ ТЕЛ ПРИ СВЕРХЗВУКОВОЙ СКОРОСТИ ПОЛЕТА
При обтекании воздушным потоком любого тела в местах торможения пои тока его кинетическая энергия переходит в тепловую, вызывая нагрев. Нагрев^ поверхности самолета неодинаков: в местах, где скорос

ГОРИЗОНТАЛЬНЫЙ ПОЛЕТ
Наука, изучающая движение летательного аппарата, называется динамикой полета. Движение летательного аппарата может быть установившимся и неустановившимся. При установившемся движении отсутствуют ус

НАБОР ВЫСОТЫ И СНИЖЕНИЕ
i Набор высоты — прямолинейное движение самолета вверх пс траектории, наклонной к горизонту. Если при этом скорость сохраняется постоянной, то набор высоты считается установившимся! Схема

ВЗЛЕТ И ПОСАДКА
Взлет самолета состоит из этапов разбега по земле, отрыва, приобретения безопасной скорости полета и набора высоты. Перед разбегом самолет выруливает на линию старта и пилот плавно увеличивает тягу

ДАЛЬНОСТЬ И ПРОДОЛЖИТЕЛЬНОСТЬ ПОЛЕТА
Дальность полета — расстояние, которое может пролететь самолет в одном направлении при расходовании определенного запаса топлива. Она складывается из участков набора высоты горизонтального полета ?

ПЕРЕГРУЗКИ В ПОЛЕТЕ. КОЭФФИЦИЕНТ БЕЗОПАСНОСТИ
При эксплуатации самолета все его части, агрегаты, приборы, трубопроводы испытывают нагрузки с различной частотой воздействия. По известным значениям, направлениям и частоте действия нагрузок можно

НОРМЫ ПРОЧНОСТИ И ЖЕСТКОСТИ
Исходными данными для расчета разрушающих нагрузок на самолет и его системы служат нормы прочности, которые опреде-^ ляют классификацию самолетов. Нагрузку определяют с учетом на-] значения самолет

НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА КРЫЛО
Основное назначение крыла — создание необходимой для полета подъемной силы, кроме того, оно обеспечивает поперечную устойчивость самолета и может быть использовано для размещения силовой установки,

РАБОТА КРЫЛА ПОД НАГРУЗКОЙ
Работу крыла под нагрузкой рассматривают из условия действий аэродинамической силы, инерционных сил конструкции крыла и сосредоточенных массовых сил. В работе крыла действие инерционных сил от агре

КОНСТРУКЦИЯ И РАБОТА ОСНОВНЫХ ЭЛЕМЕНТОВ КРЫЛА
Крыло состоит из каркаса и обшивки (рис. 6.3), продольный набор каркаса — нз лонжеронов и стрингеров, поперечный набор из нервюр Лонжерон — это продольная

КОНСТРУКТИВНО-СИЛОВЫЕ СХЕМЫ КРЫЛЬЕВ
Прочность и жесткость крыла обеспечиваются применением различных силовых схем, из которых наиболее распространены лонже- ронная и моноблочная (кессонная). У крыла лонжеронной схемы основная часть и

МЕХАНИЗАЦИЯ КРЫЛА
Для получения больших скоростей полета увеличивают нагруа ку на единицу площади крыла и стреловидность, уменьшают удл| нение и относительную толщину. Но все это значительно ухудшас взлетно-посадочн

ВНЕШНИЕ ФОРМЫ И ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
У современных самолетов лобовое сопротивление фюзеляж; составляет 20—40% от общего сопротивления самолета. Для умень шения лобового сопротивления габаритные размеры фюзеляж; должны быть малыми, а ф

НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА ФЮЗЕЛЯЖ
На фюзеляж самолета действуют внешние и внутренние сил* К первым относятся: нагрузки, передающиеся на фюзеляж от прикрепленных к нему других частей самолета—крыла, оперенн шасси; массовые силы агре

КОНСТРУКЦИИ ФЮЗЕЛЯЖЕЙ
Фюзеляж самолета состоит из каркаса и обшивки. Существуют фюзеляжи трех типов: ферменные, силовой каркас которых представляет собой пространственную ферму; балочные

ОБЩИЕ СВЕДЕНИЯ
Несущие поверхности, предназначенные для создания устойчивости, управляемости и балансировки самолета, называют оперением. Продольная балансировка, устойчивость и управляемость самолета об

КОНСТРУКЦИЯ ОПЕРЕНИЯ
По конструкции основные части оперения — стабилизатор Я киль — подобны. Одинаковы по конструкции также рули высоты и рули направления. На крупных самолетах стабилизаторы обычна выполняют разъемными

ЭЛЕМЕНТЫ СИСТЕМЫ УПРАВЛЕНИЯ САМОЛЕТОМ
Рулем высоты и элеронами управляют при помощи ручки управления или штурвальной колонки. Ручка представляет собой вертикальный неравноплечий рычаг с двумя степенями свободы, т. е. поворачивающийся в

СИСТЕМЫ УПРАВЛЕНИЯ С УСИЛИТЕЛЯМИ
С увеличением скоростей, размеров и массы самолетов нагрузи ки на поверхности управления увеличиваются.. Однако усилия н«в рычаги, ограничиваемые физическими возможностями пилота, не?] должны превы

СХЕМЫ ШАССИ
Для устойчивого положения самолета на земле необходимы минимум три опоры. В зависимости от расположения опор относительно центра тяжести самолета различают следующие основные схемы (рис. 10.1): с х

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Для обеспечения необходимой устойчивости и маневренности самолета во время движения его по взлетно-посадочной полосе (ВПП) опорные точки шасси должны быть размещены на определенном расстоянии друг

СИЛЫ, ДЕЙСТВУЮЩИЕ НА ШАССИ
Прн-етояккетгежду’поверхностью аэродрома и опорами самолета возникают реакции взаимодействия. Силы реакции земли (рис. 10.3) направлены вертикально вверх и равны в сумме весу самолета . /?

ОСНОВНЫЕ ЧАСТИ И СИЛОВЫЕ СХЕМЫ ШАССИ
Основными частями .шасси являются: колеса, лыжи или гусеницы, амортизаторы, боковые, задние или передние подкосы, замки, запирающие опоры в выпущенном или убранном положениях, подъемники, обеспечив

КОЛЕБАНИЯ НОСОВОЙ СТОЯКИ
Носовая стойка шасси имеет свободноориентирующиеся колеса, способные поворачиваться относительно вертикальной оси стойки в пределах до 45° в каждую сторону от нейтрального положения. Без свободной

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги