рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Приклад 4

Приклад 4 - раздел Образование, РОЗРАХУНКИ На міцність СТЕРЖНІВ Як Приклад Розрахунків На Позацентрове Розтягання (Стискання), Доберемо Допус...

Як приклад розрахунків на позацентрове розтягання (стискання), доберемо допустиме значення сили , яку прикладено до колони (рис. 21) і визначимо ядро перерізу. Будемо вважати, що матеріал колони має різний опір на розтягання і стискання, тому , . Розміри перерізу колони наведені на рис. 21.

 

Рисунок 21

 

Для проведення розрахунків на позацентрове розтягання (стискання) першочергово необхідно визначити геометричні характеристики поперечного перерізу відносно головних центральних осей інерції (осьові моменті інерціїї, радіуси інерції, площу перерізу).

Спочатку для складного перерізу бруса визначаємо положення центру ваги. Для цього складний профіль переріза розіб’ємо на два прямокутника з власними центральними осями та відповідно (рис. 22). Збіг центральних осей свідчить про наявність симетрії у перерізі. А якщо ось – ось симетрії, то вона є головною центральною віссю перерізу, центр ваги якого знаходиться на цій осі. Тому інша координата центру ваги .

Залишається визначити розташування центру ваги вздовж осі . Для цього скористаємося співвідношенням:

 

(33)

 

де – площа кожної складової перерізу,

– статичний момент площі, відносно осі ,

– координата центра ваги складової площі перерізу.

 

Рисунок 22

 

Для застосування формули (33) треба обрати опорну вісь , відносно якої підраховується сумарний статичний момент перерізу.

Отриманий результат відкладаємо від опорної осі (рис. 22). Таким чином центр ваги всього перерізу знайдено і, одночасно, визначена система головних центральних осей перерізу .

Сумарна площа перерізу визначається як алгебраїчна сума площ окремих частин:

Осьові моменти інерції перерізу відносно головних центральних осей інерції визначаються за виразами [1]:

 

(34)

 

де , – моменти інерції складової перерізу, підраховані відносно власних центральних осей;

– відстань між осями та ;

– відстань між осями та . Для перерізу з віссю симетрії ,

 

;

 

У системі головних центральних осей інерції полюс (точка, де прикладена сила ) має координати

Наступним кроком до вирішення задачі має бути приведення сили з полюса до центра ваги переріза – точки . На рис. 23 в цій точці з’являється окрім сили ще й два моменти: у площині та у площині .

 

Рисунок 23

 

Таким чином маємо:

 

(35)

 

Силові фактори (35) діють у будь-якому перерізі колони і призводять до появи нормальних напружень, розподіл яких приведено на рис. 23. З цього розподілу витікає, що точки першого квадранту (де розташований полюс) мають напруження одного знаку (від’ємні). То ж нейтральна лінія має пройти крізь другий, третій та четвертий квадранти (рис. 24).

 

Рисунок 24.

 

Згідно (30) підрахуємо відрізки та :

 

Таким чином, рівняння нейтральної лінії згідно з (29) стає:

 

 

або після алгебраїчних перетворень доведемо його до стандартного виду :

 

. (36)

 

Нейтральна лінія розподіляє переріз на дві зони. У зоні стискаючих напружень найбільш віддаленою є кутова точка (рис. 24). Найбільш віддаленою точкою у зоні розтягуючих напружень можуть бути кутові точки або , в залежності від нахилу нейтральної лінії до координатних осей та .

Питання про найбільшу відстань від нейтральної лінії для точок і можна розв’язати трьома способами:

а) графічно викреслити у відповідному масштабі переріз колони, провести нейтральну лінію з урахуванням відрізків , та за допомогою лінійки визначити найбільш віддалену точку;

б) визначити за допомогою співвідношень аналітичної геометрії найкоротші відстані від точок і до нейтральної лінії. Підрахунок здійснюється за формулою:

 

, (37)

 

де – найкоротша відстань від точки до прямої,

– координати точки.

Знак перед радикалом у знаменнику є протилежним до знаку коефіцієнта С [2].

Наприклад, для точки ()

 

 

для точки ()

 

 

Таким чином, найвіддаленішою точкою в розтягнутій зоні є точка .

в) записати умови міцності у розтягнутій зоні як для точки , так і для точки . З умови міцності для найбільш віддаленої точки маємо отримати найменше допустиме навантаження. Тож треба скласти умови міцності (20) або (31) для т. () у зоні розтягу, та для т. () – у зоні стискання. При складанні умов міцності сили, моменти та координати точок будемо вважати додатними, а знак напруження приписувати кожному сполучнику, згідно деформації у відповідному квадранті (рис. 23).

 

 

З урахуванням (35)

 

Звідси вираховуємо допустимі зусилля:

Якщо записати умови міцності для точки (), то будемо мати:

 

 

Цей результат () вказує, що у розтягнутій зоні найвіддаленіша від нейтральної лінії є дійсно точка .

З отриманих допустимих навантажень згідно з умовами міцності обираємо найменшу силу .

Для побудови ядра перерізу треба зробити нейтральну лінію дотичною до усіх контурних точок, але так, щоб вона не перетинала площу перерізу (рис. 25).

Рисунок 25

 

У кожному положенні нейтральної лінії слід підрахувати координати відповідного полюсу, згідно з (32).

Так у положенні 1

 

У положенні 2

 

У положенні 3

 

Положення 4 симетрично відносно положення 2, тому

 

 

Поворот нейтральної лінії на 90 градусів супроводжується переміщенням полюса по прямим лініям 1–2, 2–3, 3–4, 4–1 (рис. 25).

 

– Конец работы –

Эта тема принадлежит разделу:

РОЗРАХУНКИ На міцність СТЕРЖНІВ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ... ХАРКIВСЬКИЙ ПОЛIТЕХНIЧНИЙ ІНСТИТУТ... Киркач Б М...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Приклад 4

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

На міцність СТЕРЖНІВ при
СКЛАДНОМУ деформуванні”   Навчально – методичний посібник з розділу курсу „Опір матеріалів” для студентів машинобудівних спеціальностей

Загальні положення
Центральне розтягання – стискання (), кручення (), зсув (

Методика розрахунків на міцність
У випадку складного деформування стержня, як і у разі простого деформування, стратегічними питаннями є: - визначення небезпечного перерізу; - виявлення в межах цього перерізу небе

Просторове та косе згинання
Згинання називають косим, якщо усі навантаження діють у одній (силовій) площині, яка перетинає вісь балки , але не включає жодної з головних центральних осей інерції перерізу. Якщо силових

Приклад 1
Визначити номер двометрової консольної балки (рис. 4) з умови міцності, якщо , ,

Приклад 2
Розглянемо двотаврову балку №70, завантажену силою посередині (рис. 9). Рисунок 9   З таблиць сорт

Приклад 3
Доберемо номер двотаврової стійки, нахиленої до горизонту під кутом під дією сили (

Позацентрове розтягання – стискання бруса
Окремим випадком сумісної дії згинання та розтягання (стискання) є так зване позацентрове розтягання (стискання). Такий вид складного опору має місце, якщо на брус довільного перерізу діє сила

Сумісна дія згинання та кручення для стержнів круглого або кільцевого перерізу
  У сучасних силових пристроях широко використовується вали – циліндричні стержні круглого або кільцевого перерізів, за допомогою яких передається та розподіляється потужність (крутни

Приклад 5
Розглянемо випадок складного опору на прикладі розрахунку діаметру вала редуктора (рис 29). Нехай вал редуктора передає потужність , яка роз

Загальний випадок дії сил на стержень круглого або кільцевого перерізу
  Розрахункова схема вала редуктора, наведена на рис. 29 попереднього розділу, коректна, якщо передача зусиль з ведених шківів здійснюється фрікційно (за допомогою сил тертя). У разі

Приклад 6
Як і в попередньому прикладі вал редуктора передає потужність , яка розподіляється між веденими шківами у співвідношенні 1:3, і обертається

Загальний випадок дії сил на брус прямокутного перерізу
  У практиці машинобудування досить часто використовуються конструкції зібрані з елементів некруглих перерізів. Якщо такий елемент знаходиться під дією усіх шістьох компонентів внутрі

Приклад 7
В якості прикладу визначимо запас міцності консольної конструкції з прямолінійних стержнів прямокутного профілю, жорстко з’єднаних у вузлах (рис. 35). Навантаження мають значення

Розрахунково - проектувальне завдання
При вивчені розділу „Складне навантаження” в курсі “Опір матеріалів” ставиться мета навчити студентів основам інженерного розрахунку елементів конструкцій машин і механізмів на міцність і жорсткіст

Склад розрахунково - проектувального завдання
Розрахунково-проектувальне завдання складається з трьох етапів: 1. Рішення запропонованих викладачем задач для певних варіантів розрахункових схем і вихідних даних, оформлення їх за вимога

Таблиця Д.1 Вхідні дані до задачі 1
  nT   1,8 2,0 2,1 2,2 2,3 2,4

Таблиця Д2. Вхідні дані до задачі 2
  № вар. Сили, kH Довжини стержнів, см Розмір перерізу, см Границя текучості, МПа

Приведення сил до осі валу редуктора.
Точка . Після приведення в точці

Розтягання – стискання
Визначення реакції :

Перевірка міцності валу з урахуванням дії поздовжньої сили
Визначаємо геометричні характеристики перерізу:  

Побудова епюр внутрішніх силових факторів
- ділянка DK. Вважаємо, що ділянка DK жорстко закріплена в точці D.  

Визначення найнебезпечнішої точки поперечного перерізу
Точка 1   Напружений стан – лінійний (одновісний)

Контрольні питання
1. Яка комбінація внутрішніх зусиль при складному навантаженні стержня круглого перерізу дає дотичні і нормальні напруження у довільній точці перерізу? 2. Які внутрішні силові фактори у пе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги