рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Передача информации от непрерывного источника.

Передача информации от непрерывного источника. - раздел Информатика, ЭТАПЫ ОБРАЩЕНИЯ ИНФОРМАЦИИ Количество Информации, Получаемой От Непрерывного Источника По Каналу С Помех...

Количество информации, получаемой от непрерывного источника по каналу с помехами, определяется так же, как в случае, рассмотренном выше, но с использованием понятия дифференциальной энтропии.

Для источника, имеющего непрерывное множество состояний, среднее количество информации, содержащееся в каждом принятом значении случайной величины W относительно переданного значения случайной величины Z, можно получить как разность априорной и апостериорной дифференциальных энтропии:

Соотношение несложно выразить в виде:

Относительность дифференциальных энтропий в этом случае не принимается во внимание, поскольку количество информации не зависит от выбранного стандарта сравнения.

Основные свойства количества информации. 1. Несмотря на то, что частное количество информации может быть величиной отрицательной, количество информации неотрицательно.

Действительно, согласно выражению

Тогда

2. При отсутствии статистической связи между случайными величинами Z и W

следовательно, в этом случае

(принятые элементы сообщения не несут никакой информации относительно переданных).

3. Количество информации в W относительно Z равно количеству информации в Z относительно W.

Для доказательства этого утверждения воспользуемся выражением

 

Аналогично можно записать

 

Так как H(ZW) = H(WZ), то

откуда

4. При взаимно однозначном соответствии между множествами передаваемых и принимаемых элементов сообщений, что имеет место в отсутствии помехи, апос­териорная энтропия равна нулю и количество информа­ции численно совпадает с энтропией источника:

Это максимальное количество информации о состоянии дискретного источника. Для непрерывного источника оно равно бесконечности.

 

ПОНЯТИЕ ИНФОРМАЦИОННОГО СИГНАЛА

 

В зависимости от структуры информационных параметров сигналы подразделяют на дискретные, непрерывные и дискретно-непрерывные.

Сигнал считают дискретным по данному параметру, если число значений, которое может принимать этот параметр, конечно (или счетно). Если множество возможных значений параметра образует континуум, то сигнал считают непрерывным по данному параметру. Сигнал, дискретный по одному параметру и непрерывный по другому, называют дискретно-непрерывным.

В соответствии с этим существуют следующие разновидности математических представлений (моделей) детерминированного сигнала:

непрерывная функция непрерывного аргумента, например непрерывная функция времени (рис.3,а);

непрерывная функция-дискретного аргумента, например функция, значения которой отсчитывают только в определенные моменты времени (рис. 3,6)

дискретная функция непрерывного аргумента, например функция времени, квантованная по уровню (рис. 3, в);

дискретная функция дискретного аргумента, например функция, принимающая одно из конечного множества возможных значений (уровней) в определенные моменты времени (рис. 3, г).

Рассматриваемые модели сигналов в виде функций времени предназначены в первую очередь для анализа формы сигналов. Желательно найти такое представление сигнала, которое облегчает задачи исследования прохождения реальных сигналов, часто имеющих достаточно сложную форму, через интересующие нас системы. С этой целью сложные сигналы представляются совокупностью элементарных (базисных) функций, удобных для последующего анализа.

Наиболее широкий класс исследуемых систем — это инвариантные во времени линейные системы.

При анализе прохождения сложного сигнала u{t) через такие системы его представляют в виде взвешенной суммы базисных функций jk(t) (или соответствующего ей интеграла):

(1.1)

где [t1, t2] —интервал существования сигнала.

При выбранном наборе базисных функций сигнал u(t) полностью определяется совокупностью безразмерных коэффициентов Сk. Такие совокупности чисел называют дискретными спектрами сигналов.

На интервале [t1, t2] выражение (1.1) справедливо как для сигналов, неограниченных во времени, так и для сигналов конечной длительности. Однако за пределами интервала сигнал конечной длительности не равен нулю, так как он представляется суммой в том случае, если условно считается периодически продолжающимся. Поэтому, когда для ограниченного во времени сигнала необходимо получить представление, справедливое для любого момента времени, используется интеграл:

(1.2)

где j(a, t) — базисная функция с непрерывно изменяющимся параметром а.

В этом случае имеется непрерывный (сплошной) спектр сигнала, который представляется спектральной плотностью S(a). Размерность ее обратна размерности a. Аналогом безразмерного коэффициента Ck здесь является величина S(a)da.

Совокупность методов представления сигналов в виде (1.1) и (1.2) называют обобщенной спектральной теорией сигналов. В рамках линейной теории спектры являются удобной аналитической формой представления сигналов.

Для теоретического анализа базисные функции jk(t) нужно выбирать так, чтобы они имели простое аналитическое выражение, обеспечивали быструю сходимость ряда (1.1) для любых сигналов u(t) и позволяли легко вычислять значения коэффициентов Ck. Базисные функции не обязательно должны быть действительными, их число может быть неограниченным (-¥ ³ k ³ ¥).

В случае практической аппроксимации реального сигнала совокупностью базисных сигналов решающее значение приобретает простота их технической реализации. Сигнал представляется суммой ограниченного числа действительных линейно независимых базисных функций (сигналов).

Ортогональные представления сигналов. Вычисление спектральных составляющих сигнала существенно облегчается при выборе в качестве базиса системы ортогональных функций.

Систему функций y0(t),y1(t),…,yn(t)называют ортогональной на отрезке [ta, tb], если для всех k , за исключением случая k = j, удовлетворяется условие

(1.3)

Эта система функций будет ортонормированной (ортонормальной), если для всех j справедливо соотношение

(1.4)

Если соотношение (1.4) не выполняется и

 

 

то систему можно нормировать, умножая функции yj(t)на 1/

Определим коэффициенты Ck при представлении сигнала u(t) совокупностью ортонормированных функций в виде

 

(1.5)

предполагая, что интервал [t1, t2] лежит внутри отрезка ортогональности [ta, tb].

Правую и левую части уравнения (1.5) умножаем на yj(t) и интегрируем на интервале [t1, t2] :

 

(1.6)

В силу справедливости условия (1.3) все интегралы в правой части выражения (1.6) при k ¹j будут равны 0. При k = j в соответствии с (1.4) интеграл равен 1. Следовательно,

(1.7)

В теоретических исследованиях обычно используют полные системы ортогональных функций, обеспечиваю­щие сколь угодно малую разность непрерывной функции u(t) и представляющего ее ряда при неограниченном увеличении числа его членов. Разность оценивают по критерию

(1.8)

При этом говорят о среднеквадратической сходимости ряда к функции u(t). Широко известной ортонормированной системой является совокупность тригонометрических функций, кратных аргументов.Она ортонормальна

 

 

на отрезке [-p, p]. Так как соответствующее разложение исторически появилось первым

и было названо рядом Фурье, то соотношение (1.5) часто именуют обобщенным рядом Фурье, а значения Ck — обобщенными коэффициентами Фурье.

Известны представления сигналов по системам ортогональных базисных многочленов Ко-тельникова, Чебышева, Лаггера, Лежандра и др., а также неортогональные разложения по функциям Лагранжа,Тейлора и др.

Обощенная спектральная теория облегчает решение проблемы обоснованного выбора базисных функций для конкретных задач анализа процессов, происходящих при формировании и прохождении сигналов через те или иные звенья информационной системы.

 

ВРЕМЕННАЯ ФОРМА ПРЕДСТАВЛЕНИЯ СИГНАЛА

 

Временным представлением сигнала называют такое разложение сигнала u(t), при котором в качестве базис­ных функций используются единичные импульсные функ­ции — дельта-функции. Математическое описание такой функции задается соотношениями

(1.9)

 

 

где d(t)— дельта-функция, отличная от нуля в начале координат (при t = 0).

Для более общего случая, когда дельта-функция отличается от нуля в момент времени t = x1 (рис.),

имеем

(1.10)

 

Такая математическая модель соответствует абстрактному импульсу бесконечно малой длительности и безграничной величины. Единственным параметром, правильно отражающим реальный сигнал, является время его действия. Однако, учитывая (1.10), с помощью дельта-функции можно выразить значение реального сигнала u(t) в конкретный момент времени x1:

(1.11)

Равенство (1.11) справедливо для любого текущего момента времени t. Заменив £i на t и приняв в качестве переменной интегрирования |, получим

(1.12)

Таким образом, функция u(t) выражена в виде совокупности примыкающих друг к другу импульсов бесконечно малой длительности. Ортогональность совокупности таких импульсов очевидна, так как они не перекрываются во времени.

Разложение (1.12) имеет большое значение в теории линейных систем, поскольку, установив реакцию системы на элементарный входной сигнал в виде дельта-функции (импульсную переходную функцию), можно легко определить реакцию системы на произвольный входной сигнал как суперпозицию реакций на бесконечную последовательность смещенных дельта-импульсов с «площадями», равными соответствующим значениям входного сигнала.

С помощью дельта-функций можно также представить периодическую последовательность идеализированных импульсов с постоянными или меняющимися уровнями. Обозначив через un(t) функцию, равную u(kDt) в точках t = kDt и нулю в остальных точках, запишем:

 

 

где Dt — период следования импульсов.

Поскольку умножение u{t) на дельта-функцию в момент времени t = kDt соответствует получению отсчета этой функции, un(kAt) может представлять результат равномерной дискретизации функции u(t).

Дельта-функцию d(x) в точке x = 0 можно рассматривать как предел множества действительных непрерывных функций, подобных функциям Гаусса:

 

(2.2)

 

 

При этом вместе с величиной а максимальное значение функции Гаусса стремится к бесконечности, полуширина (1/а) стремится к нулю, в то время как интеграл этой функции всегда равен едини­це. Отсюда следует, что дельта-пункция удобна для описания лю­бой функции, имеющей форму пика с пренебрежимо (в эксперименте) малой полушириной.

Подобным же образом дельта-функция с∙d(х) используется для описания резкого пика, интеграл которого равен с. Для более ясного понимания или

 

доказательства различных соотношений удобно определять дельта-функцию как предел ряда функций.

Можно определить дельта-функцию в двух измерениях d(х, у), которая равна нулю всюду, кроме точки х = у = 0, и для которой:

 

Подобным же образом можно определить дельта-функцию для любого числа измерений d(r) или d(r—a), где r и а — векторы n-мерного пространства.

Заметим, что в двух измерениях d(х) является линией, а в трех измерениях — плоскостью.

Отметим другое важное определение дельта-функции:

 

(2.3)

 

которое встретится позже в связи с рассмотрением фурье-преобра-зований.

 

 

– Конец работы –

Эта тема принадлежит разделу:

ЭТАПЫ ОБРАЩЕНИЯ ИНФОРМАЦИИ

На сайте allrefs.net читайте: "ЭТАПЫ ОБРАЩЕНИЯ ИНФОРМАЦИИ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Передача информации от непрерывного источника.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ
Совокупность средств информационной техники и людей, объединенных для достижения определенных целей или для управления, об

КОЛИЧЕСТВО ИНФОРМАЦИИ
Передача информации инициируется либо самим источником информации, либо осуществляется по запросу. Она диктуется желанием устранить неопределенность относительно последовательности состояний, реали

Передача информации от дискретного источника.
Выясним, насколько будет изменяться неопределенность относительно состояния источника сообщения при получении адресатом элемента сообщения с выхода канала связи. Алфавиты передаваемых и принимаемых

Свертки
  В одном измерении интеграл свертки двух функций f(х)и g(х) определяется как:

Свойства фурье-преобразований
Если не использовать комплексную экспоненту, то выражение (2.12) можно переписать следующим образом:

Умножение и свертка
Добавим теперь два важных соотношения, представляющих теорему умножения:   (2.29) &

Пространство и время
  Кроме связи между пространственными распределениями f(r) и амплитудами дифракции F(u), фурье-преобразование также связывает изменение функции во вр

Точечный источник или точечная апертура
  Распределение амплитуды при рассеянии от очень малого ис­точника или при прохождении через очень малую апертуру (или щель) в одном измерении можно описать с помощью функции

Трансляция объекта
  Трансляция объекта описывается выражением   (2.37)   здесь и

Функция щели
  Функция прохождения для щели шириной a в непрозрачном экране дается выражением:

Другая форма функции щели
  Проиллюстрируем использование выражения (2.27). Заметим при этом, что для функции щели, которая была определена в разд. 2.3.4, справедливо выражение:

Прямолинейный край
    Для прямолинейного края функция прохождения имеет вид:  

Обобщение преобразований Фурье. Преобразования Лапласа
Некоторые колебания не могут быть представлены интегралом (1.21), так как для них не существует или не определена спектральная функция. Это происходит потому, что колебание не удовлетворяет условию

Операция образования величины
    часто встречается при расчете радиотехнических процессов и называется сверткой ф

Выражение энергии колебания через его спектральную функцию. Спектральная плотность энергии
Пусть Gs (w) является спектральной функцией колебания напряжения s(t). Тогда удельная энергия колебания (энергия, выделяемая на единичном сопротивлении)

Энергия взаимодействия двух колебаний
Пусть сумма колебаний напряжения s1(t) и s2(t), действует на единичном сопротивлении. Найдем выделяющуюся при этом энергию. На основании (1.53) и теорем

Соотношение между длительностью колебанияи шириной его спектра. Определения длительности колебания
При рассмотрении спектральной функции любого импульсного колебания можно установить, что чем сосредоточеннее, короче импульс во времени, тем протяженнее его спектральная функция по частоте, т. е. т

Равномерное распределение.
Пусть некоторая случайная величина X может принимать значения, принадлежащие лишь отрезку x2 ³ x ³ x1, причем вероятности попадания в любые внутренние интерва

Гауссово (нормальное) распределение.
В теории случайных сигналов фундаментальное значение имеет гауссова плотность вероятности (6.9)  

Плотность вероятности функции от случайной величины.
Пусть Y — случайная величина, связанная с X однозначной функциональной зависимостью вида у = f(x). Попадание случайной точки х в интервал шириной dx и попадание случайной точки

Функция распределения и плотность вероятности.
Пусть даны случайные величины {Х1 Х2,…,Хn}, образующие n-мерный случайный вектор X. По аналогии, с одномерным случаем функция распределения этого вектора &

Корреляция.
Предположим, что проведена серия опытов, в результате которых каждый раз наблюдалась двумерная случайная величина {Х1 Х2}. Условимся исход каждого опыта изображать точк

Функциональные преобразования многомерных случайных величин.
Предположим, что составляющие двух случайных векторови

Стационарные случайные процессы
  Среди случайных процессов особое место занимают стационар­ные случайные процессы, имеющие важное значение при рас­смотрении большого числа задач. Случайный процесс называется строго

Квазидетерминированные процессы и случайные процессы
Приведенное в настоящей главе описание случайных процессов может быть использовано не только для помех, но и для сигна­лов в случае, когда параметры сигналов меняются случайным образом на интервале

Предварительные замечания
Высокочастотные колебания, действующие на входе радиопри­емного устройства, при достаточно общих предположениях можно представить в виде

Виды помех
Помехи радиоприему имеют весьма разнообразный и сложный характер, что создает определенные трудности при их классификации. Классификацию помех можно проводить по различным признакам, в частности, м

Зависимость уровня помех от частоты
Вразличных диапазонах частот активные помехи проявляют себя неодинаково. Внутриприемные шумы возникают в широком диапазоне частот, однако только на достаточно высоких частотах (при

Законы распределения помех
Рассмотрим применительно к выходу линейной части прием­ного тракта (УПЧ) модели, определяющие плотности вероятнос­ти следующих видов аддитивных помех: флуктуациопных, импуль­сных, квазиимпульсных и

Случайные процессы как математические модели реальных помех
Реальные помехи, воздействующие на вход радиоприемного устройства, проходя через приемный тракт, включающий линей­ные и нелинейные элементы, подвергаются существенным преоб­разованиям. Выбор элемен

Марковские процессы
Удобной идеализацией реальных помех радиоприему являются марковские случайные процессы. Предыдущее рассмотрение пока­зало, что помехи радиоприему могут быть флуктуациоиными и импульсными. Флуктуаци

Флуктуационные помехи
Флуктуационные помехи занимают особое место среди различ­ных видов помех радиоприему. Значительная часть помех, такие, как тепловые шумы в пассивных элементах приемных устройств, шумы в приемной ан

Спектральная плотность флуктуационных помех
Наряду с функцией корреляции для описания случайных про­цессов широко используется также спектральная плотность g{f), которая характеризует распределение мощности (энергии) поме­хи или сигна

Белый шум
Флуктуационные помехи, для которых в широкой полосе час­тот спектральная плотность постоянна, по аналогии с белым све­том называют белым шумом. При теоретическом рассмотрении вопросов обнару

ТЕПЛОВЫЕ ШУМЫ
Проведем теперь расчет величины спектральной плотности Su шумовой ЭДС на сопротивлении R, вызванной тепловым движением электронов в проводнике, находящемся при температуре Т. Докажем

ДРОБОВОЙ ШУМ
Шум в лампах в основном создается дробовым эффектом, т. е. беспорядочными флуктуациями анодного тока около среднего значения, которое показывает амперметр постоянного тока. Термин «дробовой» связан

ГЕНЕРАЦИОННО-РЕКОМБИНАЦИОННЫЙ ШУМ
В полупроводниках и в приборах на их основе наблюдается еще один вид шума, создаваемый спонтанными флуктуациями скоростей генерации, рекомбинации и улавливания носителей, что приводит к флуктуациям

ПРИНЦИП ВЫДЕЛЕНИЯ СИГНАЛА ИЗ ШУМА
Методы выделения сигнала из шума основываются на том, что сигнал, несущий информацию, и шумы имеют разные статистические и спектральные характеристики. Спектр сигнала обычно узкополосный и

СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ
Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисных для представления радиотехнических сигналов, особое место занимают гармонические функции. Важность

Ряды Фурье.
Зададим на интервале времени [-T/2, T/2] ортонормированный базис, образованный гармоническими функциями с кратными частотами:

Преобразование Фурье.
Метод рядов Фурье допускает глубокое и плодотворное обобщение, позволяющее получать спектральные характеристики непериодических сигналов. Среди последних наибольший интерес для радиотехники предста

Понятие спектральной плотности сигнала.
  Воспользуемся тем, что коэффициенты ряда Фурье образуют комплексно-сопряженные пары: ;

Обратное преобразование Фурье.
Решим обратную задачу спектральной теории сигналов: найдём сигнал по его спектральной плотности, которую будем считать заданной. Предположим вновь, что непериодический сигнал получается из

Преобразование Лапласа.
Спектральные методы анализа сигналов основаны на том, что исследуемый сигнал представляется в виде суммы неограниченно большого числа элементарных слагаемых, каждое из которых периодически изменяет

Условия существования преобразования Лапласа. Связь между преобразованиями Фурье и Лапласа.
Пусть - некоторый сигнал, определенный при >

Представление отклика линейной цепи в форме интеграла наложения или свертки.
    Любой детерминированный сигнал можно представить при помощи единичной ступенчатой или единичной импульсной функции, называемой для краткости единичная ступенька и ед

Дискретное представление сигналов. Теорема Котельникова.
    Если в спектре сигнала нет составляющих с частотой выше , то такая частота называется пред

Прохождение сигналов через линейные системы.
Каждое радиотехническое устройство представляет собой систему независимо от своего назначения и уровня сложности, то есть совокупность физических объектов, между которыми существуют определённые вз

Импульсные, переходные и частотные характеристики линейных систем.
  Замечательная особенность линейных систем – справедливость принципа суперпозиции – открывает прямой путь к систематическому решению задач о прохождении разнообразных сигналов через

Вход Выход Вход Выход
h(t) H(x) а) б) Рисунок 5. Схемы линейных систем: а – линейная колебательная система с сосредоточенными параметрами; б - волновой аналог системы.   Н

ДИАГРАММА НАПРАВЛЕННОСТИ ИЗЛУЧАЮЩЕЙ СИСТЕМЫ
Излучающие системы являются преобразующим звеном между электромагнитными волнами, распространяющимися в свободном пространстве, и электромагнитными волнами, распространяющимися в линии передачи. В

Характеристики диаграмм направленности.
Из диаграммы направленности легко определить направление главного максимума, ширину главного лепестка и относительный уровень главных максимумов. Относительный уровень боковых максимумов е

Графическое изображение диаграммы направленности.
Одним из наиболее распространенных способов изображения диаграммы направленности антенн является вычерчивание так называемых полярных диаграмм направленности. Представим ряд векторов, исхо

Двойной физический смысл пространственных частот.
Рассмотрим соотношения, представляющие собой интеграл Фурье для двух пар переменных, и

Фильтрующие свойства свободного пространства
    Рассмотрим сначала функцию, являющуюся двухмерной частотной характеристикой свободного пространства:

СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ
1.1 Ряды Фурье 1.2 Преобразование Фурье 1.3 Понятие спектральной плотности сигнала 1.4 Обратное преобразование Фурье 1.5 Преобразование Лапласа 1.6 Усло

ДИАГРАММА НАПРАВЛЕННОСТИ ИЗЛУЧАЮЩЕЙ СИСТЕМЫ
2.1 Характеристики диаграмм направленности 2.2 Графическое изображение диаграммы направленности 2.3 Двойной физический смысл пространственных частот 2.4 Фильтрующие свойс

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги