рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Решение

Решение - раздел Математика, Многочлен и его стандартный вид 1) 323 107 2) 107 2 321 3 100 53 2 7 1 Не Сущес...

1) 323 107 2) 107 2

321 3 100 53

2 7

1 не существует

Ответ: НОД 323; 107 не существует.

Теорема Безу

французский математик, член Парижской Академии Наук( с 1758 года ), родился в Немуре 31 марта 1730 года и умер 27 сентября 1783 года.

С 1763 года Безу преподавал математику в училище гардемаринов, а с 1768 года и в королевском артиллерийском корпусе.

Основные работы Этьена Безу относятся к высшей алгебре, они посвящены созданию теории решения алгебраических уравнений. В теории решения систем линейных уравнений он содействовал возникновению теории определителей , развивал теорию исключения неизвестных из систем уравнений высших степеней, доказал теорему (впервые сформулированную К. Маклореном ) о том , что две кривые порядка m и n пересекаются не более чем в mn точках. Во Франции и за её границей вплоть до 1848 года был очень популярен его шеститомный“Курс математики “, написанный им в 1764-69 годах. Безу развил метод неопределённых множителей, в элементарной алгебре его именем назван способ решения систем уравнений, основанный на этом методе . Часть трудов Безу посвящена внешней баллистике. Именем учёного названа одна из основных теорем алгебры.

Теорема Безу.

Остаток от деления полинома Pn(x)

на двучлен (x-a) равен значению

этого полинома при x = a

Пусть :

Pn(x) – данный многочлен степени n ,

двучлен (x-a) - его делитель,

Qn-1(x) – частное от деления Pn(x) на x-a (многочлен степени n-1 ) ,

R – остаток от деления ( R не содержит переменной x как делитель первой степени относительно x ).

Доказательство :

Согласно правилу деления многочленов с остатком можно записать :

Pn (x) = (x-a)Qn-1(x) + R .

Отсюда при x = a :

Pn (a) = (a-a)Qn-1 (a) + R =0*Qn-1(a)+R=

=0+R=R .

Значит , R = Pn (a) , т.е. остаток от деления полинома на (x-a) равен значению этого

полинома при x=a , что и требовалось доказать .

Следствия из теоремы .

Следствие 1 :

Остаток от деления полинома Pn (x)

на двучлен ax+b равен значению

этого полинома при x = -b/a ,

т. е. R=Pn (-b/a) .

Доказательство :

Согласно правилу деления многочленов :

Pn (x)= (ax + b)* Qn-1 (x) + R .

При x= -b/a :

Pn (-b/a) = (a(-b/a) + b)Qn-1(-b/a) + R = R. Значит , R = Pn (-b/a) , что и требовалось доказать.

Следствие 2:

Если число a является корнем

многочлена P (x) , то этот

многочлен делится на (x-a) без

остатка .

Доказательство :

По теореме Безу остаток от деления многочлена P (x) на x-a равен P (a) , а по условию a является корнем P (x) , а это значит , что P (a) = 0 , что и требовалось доказать .

Из данного следствия теоремы Безу видно , что задача решения уравнения P (x) = 0 равносильна задаче выделения делителей многочлена P , имеющих первую степень ( линейных делителей ) .

Следствие 3 :

Если многочлен P (x) имеет

попарно различные корни

a1 , a2 , … , an , то он делится на

произведение (x-a1) … (x-an)

без остатка .

Доказательство :

Проведём доказательство с помощью математической индукции по числу корней . При n=1 утверждение доказано в следствии 2 . Пусть оно уже доказано для случая , когда число корней равно k , это значит , что P(x) делится без остатка на (x-a1)(x-a2) … (x-ak) , где

a1 , a2 , … , ak - его корни .

Пусть P(x) имеет k+1 попарно различных корней .По предположению индукции a1 , a2 , ak , … , ak+1 являются корнями многочлена, а , значит, многочлен делится на произедение (x-a1) … (x-ak) , откуда выходит , что

P(x) = (x-a1) … (x-ak)Q(x).

При этом ak+1 – корень многочлена P(x) , т. е. P(ak+1) = 0 .

Значит , подставляя вместо x ak+1 , получаем верное равенство :

P(ak+1) = (ak+1-a1) … (ak+1-ak)Q(ak+1) =0.

Но ak+1 отлично от чисел a1 , … , ak , и потому ни одно из чисел ak+1-a1 , … , ak+1-ak не равно 0 . Следовательно , нулю равно Q(ak+1) , т. е. ak+1 – корень многочлена Q(x) . А из следствия 2 выходит , что Q(x) делится на x-ak+1 без остатка .

Q(x) = (x-ak+1)Q1(x) , и потому

P(x) = (x-a1) … (x-ak)Q(x) =(x-a1) … (x-ak)(x-ak+1)Q1(x) .

Это и означает , что P(x) делится на (x-a1) … (x-ak+1) без остатка .

Итак, доказано , что теорема верна при k =1 , а из её справедливости при n = k вытекает , что она верна и при n = k+1. Таким образом, теорема верна при любом числе корней , что и требовалось доказать .

Следствие 4 :

Многочлен степени n имеет не более

n различных корней .

Доказательство :

Воспользуемся методом от противного: если бы многочлен Pn(x) степени n имел бы более n корней - n+k (a1 , a2 , … , an+k - его корни ) , тогда бы по ранее доказанному следствию 3 он

бы делился на произведение (x-a1) … (x-an+k) , имеющее степень n+k , что невозможно .

Мы пришли к противоречию , значит наше предположение неверно и многочлен степени n не может иметь более , чем n корней , что и требовалось доказать .

Следствие 5 :

Для любого многочлена P(x)

и числа a разность

(P(x)-P(a)) делится без

остатка на двучлен (x-a) .

Доказательство :

Пусть P(x) – данный многочлен степени n , a - любое число .

Многочлен Pn(x) можно представить в виде : Pn(x)=(x-a)Qn-1(x)+R ,

где Qn-1(x) – многочлен , частное при делении Pn(x) на (x-a) ,

R – остаток от деления Pn(x) на (x-a) .

Причём по теореме Безу :

R = Pn(a) , т.е.

Pn(x)=(x-a)Qn-1(x)+Pn(a) .

Отсюда

Pn(x) - Pn(a) = (x-a)Qn-1(x) ,

а это и означает делимость без остатка ( Pn(x) – Pn(a) )

на (x-a) , что и требовалось доказать .

Следствие 6 :

Число a является корнем

многочлена P(x) степени

не ниже первой тогда и

только тогда , когда

P(x) делится на (x-a)

без остатка .

Доказательство :

Чтобы доказать данную теорему требуется рассмотреть необходимость и достаточность сформулированного условия .

1.Необходимость .

Пусть a – корень многочлена P(x) , тогда по следствию 2 P(x) делится на (x-a) без остатка .

Таким образом делимость P(x) на (x-a) является необходимым условием для того , чтобы a являлось корнем P(x) , т.к. является следствием из этого .

2.Достаточность .

Пусть многочлен P(x) делится без остатка на (x-a),

тогда R = 0 , где R – остаток от деления P(x) на (x-a) , но по теореме Безу R = P(a) , откуда выходит , что P(a) = 0 , а это означает , что a является корнем P(x) .

Таким образом делимость P(x) на (x-a) является и достаточным условием для того , чтобы a являлось корнем P(x) .

Делимость P(x) на (x-a) является необходимым и достаточным условием для того, чтобы a являлось корнем P(x) , что и требовалось доказать .

Следствие 7(авторское):

Многочлен , не имеющийй действи-

тельных корней , в разложении

на множители линейных множителей

не содержит .

Доказательство :

Воспользуемся методом от противного: предполо-жим , что не имеющий корней многочлен P(x) при разложении на множители содержит линейный множитель (x – a):

P(x) = (x – a)Q(x),

тогда бы он делился на (x – a) , но по следствию 6 a являлось бы корнем P(x) , а по условию он корней не содержит . Мы пришли к противоречию , значит наше предположение неверно и многочлен ,

не имеющий действительных корней , в разложении на множители линейных множителей не содержит , что и требовалось доказать .

На основании теоремы Безу и следствия 5 можно доказать следующие утверждения:

1. Разность одинаковых натуральных степеней на разность их оснований делится без остатка :

Пусть P(x) = xn , P(a) = an ,

тогда xn – an – разность одинаковых натуральных степеней .

По следствию 5

P(x) - P(a) = xn – an = (x – a)Q(x) ,

а это значит , что

(xn–an)/(x–a)=Q(x), т.е. разность одинаковых натуральных степеней на разность их оснований делится без остатка , что и требовалось доказать .

Итак

(xn – an)/(x – a) = xn-1 + axn-2 + a2xn-3 + … +an-2x + an-1.

2. Разность одинаковых чётных степеней на сумму их оснований делится без остатка .

Пусть P(x) = x2k , тогда P(a) = a2k .

Разность одинаковых чётных степеней x2k - a2k равна P(x) – P(a) .

P(a) = a2k = (-a)2k = P(-a) , т.е. x2k - a2k = P(x) – P(-a).

По следствию 5

P(x) - P(-a) = (x –(- a))Q(x)=

= (x + a)Q(x)

а это значит , что

x2k – a2k = (x + a)Q(x) или

(x2k – a2k)/(x + a) = Q(x) ,

т.е. разность одинаковых чётных степеней на сумму их оснований делится без остатка , что и требовалось доказать .

Итак ,

(x2k – a2k)/(x + a) = x2k-1 – ax2k-2 + … +a2k-2x + a2k-1.

3. Разность одинаковых нечётных натуральных степеней на сумму их оснований не делится .

Пусть P(x) = x2k+1 - a2k+1 – разность одинаковых нечётных степеней .

По теореме Безу при делении x2k+1 - a2k+1 на x + a = x – (-a) остаток равен

R = P(-a) = (-a)2k+1 – a2k+1 = -2a2k+1

Т. к. остаток при делении не равен 0 , то разность одинаковых нечётных натуральных степеней на сумму их оснований не делится , что и требовалось доказать .

4. Сумма одинаковых нечётных натуральных степеней на сумму их оснований делится без остатка .

Пусть P(x) = x2л+1 , P(-a) = (-a)2л+1 = -а2л+1 ,

тогда P(x) – P(-a) = x2k+1 + a2k+1 – сумма одинаковых нечётных натуральных степеней .

По следствию 5

P(x) - P(-a) = x2k+1 + a2k+1= (x –(- a))Q(x)=

= (x + a)Q(x),

а это значит , что

(x2k+1 + a2k+1)/(x + a) = Q(x) ,

т.е. сумма одинаковых нечётных натуральных степеней на сумму их оснований делится без остатка , что и требовалось доказать .

Итак ,

(x2k+1 + a2k+1)/(x + a) = x2k - ax2k-1 + … - a2k-1x + a2k.

5. Сумма одинаковых чётных натуральных степеней на сумму их оснований не делится .

Пусть P(x) = x2k + a2k – сумма одинаковых чётных степеней .

По теореме Безу при делении x2k + a2k на x + a = x – (-a) остаток равен

R = P(-a) = (-a)2k + a2k = 2a2k.

Т. к. остаток при делении не равен 0 , то сумма одинаковых чётных натуральных степеней на сумму

их оснований не делится, что и требовалось доказать.

Остановимся на рассмотрении некоторых случаев применения теоремы Безу к решению практических задач .

Пример 1.

Найти остаток от деления многочлена

x3 – 3x2 + 6x – 5

на двучлен x – 2 .

По теореме Безу

R = P3 (2) = 23 – 3*22 + 6*2 – 5 = 3 .

Ответ: R = 3 .

Пример 2.

Найти остаток от деления многочлена

32x4 – 64x3 + 8x2 + 36x + 4

на двучлен 2x – 1 .

Согласно следствию 1 из теоремы Безу

R=P4(1/2)=32*1/24–64*1/23 + 8*1/22+36*1/2+4=

= 2 – 8 + 2 + 18 + 4 =18 .

Ответ: R = 18 .

Пример 3.

При каком значении a многочлен

x4 + ax3 + 3x2 – 4x – 4

делится без остатка на двучлен x – 2 ?

По теореме Безу

R = P4 (2) = 16 + 8a + 12 – 8 – 4 = 8a +16.

Но по условию R = 0 , значит

8a + 16 = 0 ,

отсюда

a = -2 .

Ответ: a = -2 .

Пример 4.

При каких значениях a и b многочлен

ax3 + bx2 – 73x + 102

делится на трёхчлен

x2 – 5x + 6 без остатка ?

Разложим делитель на множители :

x2 – 5x + 6 = (x – 2)(x – 3) .

Поскольку двучлены x – 2 и x – 3 взаимно просты , то данный многочлен делится на x – 2 и на x – 3 , а это значит , что

по теореме Безу

R1 = P3 (2) = 8a + 4b – 146 + 102 =

= 8a + 4b – 44 = 0

R2 = P3 (3) = 27a+9b – 219 + 102 =

= 27a +9b -117 =0

Решим систему уравнений :

8a + 4b – 44 = 0

27a + 9b – 117 = 0

2a + b = 11

3a + b = 13

Отсюда получаем :

a = 2 , b = 7 .

Ответ: a = 2 , b = 7 .

Пример 5.

При каких значениях a и b многочлен

x4 + ax3 – 9x2 + 11x + b

делится без остатка на трёхчлен

x2 – 2x + 1 ?

Представим делитель так :

x2 – 2x + 1 = (x – 1)2

Данный многочлен делится на x – 1 без остатка ,

если по теореме Безу

R1 = P4 (1) = 1 + a – 9 + 11 + b = a + b + 3 = 0.

Найдём частное от деления этого многочлена на x – 1 :

_ x4 + ax3–9x2 + 11x–a –3 x – 1

x4 – x3 x3+(a+1)x2+(a–8)x+(a+3)

_(a + 1)x3 – 9x2

(a + 1)x3 – (a + 1)x2

_(a – 8)x2 + 11x

(a – 8)x2 – (a –8)x

_(a + 3)x – a – 3

(a + 3)x – a – 3

 

Частное

x3+(a+1)x2+(a–8)x+(a+3)

делится на (x – 1) без остатка , откуда

R2 = P3 (1) = 1 + (a + 1)*1 +(a – 8)*1 + a+3 = 3a – 3 = 0 .

a + b + 3 = 0

3a – 3 = 0

a + b =-3

a = 1

Из системы : a = 1 , b = -4

Ответ: a = 1 , b = -4 .

Пример 6.

Разложить на множители многочлен P(x) = x4 + 4x2 – 5 .

Среди делителей свободного члена число 1 является корнем данного многочлена P(x) , а это значит , что по следствию 2 из теоремы Безу P(x) делится на (x – 1) без остатка :

_x4 + 4x2 – 5 x – 1

x4 – x3 x3 + x2 + 5x + 5

_x3 + 4x2 – 5

x3 – x2

_5x2 – 5

5x2 – 5x

_5x – 5

5x – 5

P(x)/(x – 1) = x3 + x2 + 5x + 5 , значит

P(x) = (x – 1)(x3 + x2 + 5x + 5).

Среди делителей свободного члена многочлена x3 + x2 + 5x + 5 x = -1 является его корнем , а это значит , что по следствию 2 из теоремы Безу x3 + x2 + 5x + 5 делится на (x + 1) без остатка :

_x3 + x2 +5x + 5 x + 1

x3 + x2 x2 +5

_5x + 5

5x + 5

(x3 + x2 +5x + 5)/(x + 1) = x2 +5 ,

значит

x3 + x2 +5x + 5 = (x +1)(x2 +5).

Отсюда

P(x) = (x – 1)(x +1)(x2 +5) .

По следствию 7 (x2 + 5) на множители не раскладывается , т.к. действительных корней не имеет , поэтому P(x) далее на множители не раскладывается .

Ответ : x4 + 4x2 – 5 = (x – 1)(x +1)(x2 +5) .

Пример 7.

Разложить на множители многочлен P(x) = x4 + 324 .

P(x) корней не имеет , т.к. x4 не может быть равен -324 , значит , по следствию 7 P(x) на множители не раскладывается .

Ответ : многочлен на множители не раскладывается .

Пример 8.

Какую кратность имеет корень 2 для многочлена

P(x) = x5 - 5x4 + 7x3 – 2x2 + 4x – 8 .

Определение: Если многочлен P(x) делится без остатка на (x – a)k , но не делится на (x – a)k+1 , то говорят , что число a является корнем кратности k для P(x).

_x5 - 5x4 + 7x3 – 2x2 + 4x – 8 x – 2

x5 - 2x4 x4 – 3x3 + x2 + 4

_-3x4 + 7x3 – 2x2 + 4x – 8

-3x4 + 6x3

_x3 – 2x2 + 4x – 8

x3 – 2x2

_4x – 8

4x – 8

_x4 – 3x3 + x2 + 4 x – 2

x4 – 2x3 x3 – x2 – x – 2

_-x3 + x2 + 4

-x3 +2x2

_-x2 + 4

-x2 + 2x

_-2x + 4

-2x + 4

 

_ x3 – x2 – x – 2 x – 2

x3 – 2x2 x2 + x + 1

_x2 – x – 2

x2 – 2x

_x – 2

x – 2

 

 

x2 + x + 1 на x – 2 не делится , т.к. R=22 + 2 + 1= 7

Значит , P(x)/(x – 2)3 = x2 + x + 1 , т.е. корень 2 имеет кратность 3 для многочлена P(x) .

Ответ: корень 2 имеет кратность 3 для многочлена P(x) .

Пример 9.

Составить кубический многочлен , имеющий корень 4 кратности 2 и корень -2 .

По следствию 3 , если многочлен P(x) имеет корень 4 кратности 2 и корень –2 , то он делится без остатка на (x – 4)2(x + 2) , значит

P(x)/(x – 4)2(x + 2) = Q(x) ,

т.е. P(x) = (x – 4)2(x + 2)Q(x) =

= (x2 – 8x +16)(x + 2)Q(x) =

= (x3 – 8x2 + 16x +2x2 – 16x + 32)Q(x) =

= (x3 – 6x2 + 32)Q(x).

(x3 – 6x2 + 32) - кубический многочлен , но по условию P(x) – также кубический многочлен, следовательно , Q(x) – некоторое действительное число

Пусть Q(x) = 1 , тогда P(x) = x3 – 6x2 + 32 .

Ответ: x3 – 6x2 + 32 .

Пример 10.

Определите a и b так , чтобы -2 было корнем многочлена P(x) = x5 + ax2 + bx + 1, имеющим по крайней мере кратность два .

Если -2 – корень многочлена P(x) кратности два , то по следствию 3 P(x) делится на (x + 2)2 без остатка (R = 0)

(x + 2)2 = x2 + 4x + 4

_x5 + ax2 + bx + 1 x2 + 4x + 4

x5 + 4x4 + 4x3 x3 – 4x2 + 12x – (a + 32)

_-4x4–4x3–ax2+bx+1

-4x4 – 16x3 – 16x2

_12x3 + (16 – a)x2 + bx + 1

12x3 +48x2 + 48x

_-(a + 32)x2 + (b – 48)x + 1

-(a + 32)x2 – 4(a + 32)x – 4(a + 32)

(4a +b – 48 + 128)x + 4a + 129

R = (4a +b – 48 + 128)x + 4a + 129 =

= (4a +b + 80)x + 4a + 129

Но R = 0 , значит

(4a +b + 80)x + 4a + 129 = 0 при любых x .

Это возможно при условии , что

4a +b + 80 = 0 ,

4a + 129 = 0

Решим систему двух уравнений :

4a +b + 80 = 0 a = -32,25

4a + 129 = 0 b = 49

Ответ: a = -32,25 , b = 49 .

Из рассмотренных примеров видно , что теорема Безу находит применение при решении задач , связанных с делимостью многочленов (нахождение остатка при делении многочленов , определение кратности многочленов и т.д. ) , с разложением многочленов на множители , с определением кратности корней и многих других .

Теорема Безу находит применение при рассмотрении одной из важнейших задач математики – решении уравнений .

Разложение многочлена на множители.

Теорема.

Любой многочлен степени n вида представляется произведением постоянного множителя при старшей степени и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.

Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.

Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.

многочлена, представление его в виде произведения двух или большего числа многочленов низших степеней, например: х2 — 1 = (х — 1)(х + 1), х2 — (a + b) x + ab = (x — a)(x — b), x4— a4 = (x — a)(x + a)(x 2+ a 2). Простейшие приёмы Р. на м.: вынесение общего множителя за скобку: х4 + a2x2 = x2(x2 + a2), х (х — а) — b (x — a) = (x — a)(x — b); применение готовых (запоминаемых наизусть) формул: x2 — a2 = (х — a)(x + a), x3— a3 = (х — а)(х2 + ах + а2), x2+ 2ax + a2 = (х + а)2, x3 + 3ax2 + 3a2x + a3= (х + а)3, способ группировки, например х3 + ax2 + a2x + a3 = (х3 + ax2) + (a2x + a 3) = x2(x + a) + a2(x + a) = (х + а)(а2 + х 2); x4 + a4 = (х4 +2а2х2+ а4) — 2a2x2 = (x2 + a2)2— (√2ах)2 = (х2 — √2ax + a 2)(x2 + √2ax + a2), и т.п. Если многочлен степени n р (х) = a0 + a1x + a2x2 + ... + anxn (an ≠ 0) имеет корни x1, x2, ..., xn, то справедливо Р. на м.: р (х) = an (х — х1)...(х — xn); здесь все множители 1-й степени (линейные). Например, из того, что многочлен 3-й степени х 3 — 6х 2 + 11x — 6 имеет корни x1 = 1, x2 = 2, x3 = 3, вытекает Р. на м.: х3 — 6х2 + 11x — 6 = (x — 1)(x — 2)(х — 3). Вообще, каждый многочлен с действительными коэффициентами разлагается на множители 1-й или 2-й степени также с действительными коэффициентами. Так, выше было указано разложение: x4 + a4 = (x2— √2ax + a2)(x2 + √2ax + a2). Здесь все множители 2-й степени; при а действительном и неравном нулю они могут быть разложены только на множители с комплексными коэффициентами.

Среди многочленов от двух или большего числа переменных существуют многочлены сколь угодно высокой степени, которые вообще не разлагаются на множители (неприводимые многочлены); таков, например, многочлен xn + y при любом натуральном n. См. Многочлен, Неприводимый многочлен.

Формулы сокращенного умножения

1. (а + Ь)2 = a2 + 2ab + b2 — квадрат суммы.

2. (а - Ь)2 = а2 - 2ab + b2 — квадрат разности.

3. а2 - b2 = (а + Ь) • (a - b) — разность квадратов.

4. (а + b)3 = а3 + За2b + Заb2 + b3 = а3 + b3 + Заb(a + b) — куб суммы.

5. (a - b)3 = a3 - За2b + Заb2 - b3 = а3 — b3 — Заb(а — b) — куб разности.

6. a3 + b3 = (a + b) • (а2 - аb + b2) - сумма кубов.

7. a3 - b3 = (a - b) • (а2 + ab + b2) - разность кубов.

– Конец работы –

Эта тема принадлежит разделу:

Многочлен и его стандартный вид

Многочленом называется сумма одночленов... Одночлены из которых составлен многочлен называют членами многочлена Так... Если многочлен состоит из двух членов то его называют двучленом если из трех трехчленом Одночлен считают...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Решение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Деление многочленов
При делении многочлены представляются в канонической форме и располагаются по убывающим степеням какой-либо буквы, относительно которой определяется степень делимого и делителя. Степень делимого до

Упражнения
Выполнить действия 1. (– 2х5 + х4 + 2х3 – 4х2 + 2х + 4) : (х3 + 2). Ответ: – 2х2 + х +2 – частное, 0 – остаток.

Алгоритм Евклида
Если каждый из двух многочленов делится без остатка на третий, то этот третий многочлен называется общим делителем первых двух. Наибольшим общим делителем (НОД) двух многочленов называется

Решение
Найдем НОД данных многочленов, применяя алгоритм Евклида 1) х3 + 6х2 + 11х + 6 х3 + 7х2 + 14х + 8 х3 + 7х2 + 14х

Решение
Для перехода в делимом и делителе к целым коэффициентам умножим делимое на 6, что приведет к умножению на 6 искомого частного Q и остатка R. После чего, умножим делитель на 5, что приведет к умноже

Решение
Применяя алгоритм Евклида, получим 1) х4 + 3х3 + 3х2 + 3х + 2 х4 + х3 – 3х2 + 4 х4

Упражнения
Сократить дроби 1. Ответ:

Нахождение НОД двух натуральных чисел
Число является частным случаем многочлена. Поэтому, алгоритм нахождения НОД двух натуральных чисел не отличается от рассмотренного алгоритма определения НОД двух многочленов. При этом, большее из з

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги