рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Какое отношение имеет теорема Гёделя к «бытовым» действиям?

Какое отношение имеет теорема Гёделя к «бытовым» действиям? - раздел Физика, Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления Допустим Однако, Что Мы Все Уже Согласны С Тем, Что При Формировании Осознанн...

Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получе­нии осознанных же математических решений в нашем мозге дей­ствительно происходит что-то невычислимое. Каким образом это поможет нам понять причины ограниченных способностей робо­тов, которые, как я упоминал ранее, значительно хуже справ­ляются с элементарными, «бытовыми», действиями, нежели со сложными задачами, для выполнения которых требуются вы­сококвалифицированные специалисты-люди? На первый взгляд, создается впечатление, что мои выводы в корне противополож­ны тем, к которым придет всякий здравомыслящий человек, ис­ходя из известных ограничений искусственного интеллекта — по крайней мере, сегодняшних ограничений. Ибо многим почему-то кажется, что я утверждаю, будто невычислимое поведение долж­но быть связано скорее с пониманием крайне сложных областей математики, а никак не с обыденным, бытовым поведением. Это не так. Я утверждаю лишь, что пониманию сопутствуют невы­числимые процессы одинаковой природы, вне зависимости отто­го, идет ли речь о подлинно математическом восприятии, скажем, бесконечного множества натуральных чисел или всего лишь об осознании того факта, что предметом удлиненной формы можно подпереть открытое окно, о понимании того, какие именно ма­нипуляции следует произвести с куском веревки для того, чтобы привязать или, напротив, отвязать уже привязанное животное, о постижении смысла слов «счастье», «битва» или «завтра» и, наконец, о логическом умозаключении относительно вероятного местонахождения правой ноги Авраама Линкольна, если извест­но, что левая его нога пребывает в настоящий момент в Вашинг­тоне, — я привел здесь некоторые из примеров, оказавшихся на удивление мучительными для одной реально существующей ИИ-системы! Такого рода невычислимые процессы лежат в основе всякой деятельности, результатом которой является непо­средственное осознание чего-либо. Именно это осознание поз­воляет нам визуализировать геометрию движения деревянного бруска, топологические свойства куска веревки или же «связ­ность» Авраама Линкольна. Оно также позволяет нам получить до некоторой степени прямой доступ к опыту другого человека, с помощью чего мы можем «узнать», что этот другой, скорее все­го, подразумевает под такими словами, как «счастье», «битва» и «завтра», несмотря даже на то, что предлагаемые в процессе общения объяснения зачастую оказываются недостаточно аде­кватными. Передать «смысл» слов от человека к человеку все же возможно, однако не с помощью объяснений различной сте­пени адекватности, а лишь благодаря тому, что собеседник уже, как правило, имеет в сознании некий общий образ возможного смысла этих слов (т. е. «осознает» их), так что даже очень неаде­кватных объяснений обычно бывает вполне достаточно для того, чтобы человек смог «уловить» верный смысл. Именно наличие такого общего «осознания» делает возможным общение между людьми. И именно этот факт ставит неразумного, управляемого компьютером робота в крайне невыгодное положение. (В самом деле, уже самый смысл понятия «смысл слова» изначально вос­принимается нами как нечто само собой разумеющееся, и поэто му совершенно непонятно, каким образом такое понятие можно сколько-нибудь адекватно описать нашему неразумному роботу.) Смысл можно передать лишь от человека к человеку, потому что все люди имеют схожий жизненный опыт или аналогичное вну­треннее ощущение «природы вещей». Можно представить «жиз­ненный опыт» в виде своеобразного хранилища, в которое скла­дывается память обо всем, что происходит с человеком в течение жизни, и предположить, что нашего робота не так уж и сложно таким хранилищем оснастить. Однако я утверждаю, что это не так; ключевым моментом здесь является то, что рассматриваемый субъект, будь то человек или робот, должен свой жизненный опыт осознавать.

Что же заставляет меня утверждать, будто упомянутое осо­знание, что бы оно из себя ни представляло, должно быть невы­числимым — иначе говоря, таким, что его не сможет ни достичь, ни хотя бы воспроизвести ни один робот, управляемый ком­пьютером, построенным исключительно на базе стандартных ло­гических концепций машины Тьюринга (или эквивалентной ей) нисходящего либо восходящего типа? Именно здесь и играют решающую роль гёделевские соображения. Вряд ли мы в на­стоящее время можем многое сказать об «осознании», напри­мер, красного цвета; а вот относительно осознания бесконечно­сти множества натуральных чисел кое-что определенное нам таки известно. Это такое «осознание», благодаря которому ребенок «знает», что означают слова «ноль», «один», «два», «три», «че­тыре» и т. д. и что следует понимать под бесконечностью этой по­следовательности, хотя объяснения ему были даны до нелепости ограниченные и, на первый взгляд, к делу почти не относящиеся, на примере нескольких бананов и апельсинов. Из таких частных примеров ребенок и в самом деле способен вывести абстрактное понятие числа «три». Более того, он также оказывается в состоя­нии понять, что это понятие является лишь звеном в бесконечной цепочке похожих понятий («четыре», «пять», «шесть» и т.д.). В некотором платоническом смысле ребенок изначально «знает», что такое натуральные числа.

Возможно, кто-то усмотрит здесь некий налет мистики, од­нако в действительности мистика здесь не при чем. Для пони­мания последующих рассуждений крайне важно отличать такое платоническое знание от мистицизма. Понятия, «известные» нам в платоническом смысле, суть вещи для нас «очевидные»: вещи, которые сводятся к воспринятому когда-то «здравому смыс­лу», — при этом мы не можем охарактеризовать эти понятия во всей их полноте посредством вычислительных правил. Дей­ствительно — и это станет ясно из дальнейших рассуждений, связанных с доказательством Гёделя, — не существует способа целиком и полностью охарактеризовать свойства натуральных чисел на основе лишь таких правил. А как же тогда описания числа через яблоки или бананы дают ребенку понять, что означа­ют слова «три дня», и откуда ему знать, что смысл абстрактного понятия числа «три» здесь совершенно тот же, что и в словах «три апельсина»? Разумеется, такое понимание иногда приходит к ребенку далеко не сразу, и на первых порах он, бывает, ошиба­ется, однако суть не в этом. Суть в том, что подобное осознание вообще возможно. Абстрактное понятие числа «три», равно как и представление о том, что существует бесконечная последова­тельность аналогичных понятий — собственно последователь­ность натуральных чисел, — и в самом деле вполне доступно человеческому пониманию, однако, повторяю, лишь через осо­знание.

Я утверждаю, что точно так же мы не пользуемся вычис­лительными правилами при визуализации движений деревянного бруска, куска веревки или Авраама Линкольна. Вообще говоря, существуют весьма эффективные компьютерные модели движе­ния твердого тела — например, деревянного бруска. С их по­мощью можно осуществлять моделирование такого движения с точностью и достоверностью, обычно недостижимыми при непо­средственной визуализации. Аналогично, вычислительными ме­тодами можно моделировать и движение веревки или струны, хо­тя такое моделирование почему-то оказывается несколько более сложным по сравнению с моделированием движения твердого те­ла. (Отчасти это связано с тем, что для описания положения «ма­тематической струны» необходимо определить бесконечно мно­го параметров, тогда как положение твердого тела описывается всего шестью.) Существуют компьютерные алгоритмы для опре­деления «заузленности» веревки, однако они в корне отличаются от алгоритмов, описывающих движение твердого тела (и не очень эффективны в вычислительном отношении). Любое воспроизве­дение с помощью компьютера внешнего облика Авраама Лин­кольна, безусловно, представляет собой еще более сложную за­дачу. Во всяком случае, дело не в том, что визуализация чего-либо человеком «лучше» или «хуже» компьютерного моделирования, просто это вещи совершенно различные.

Важный момент, как мне кажется, заключается в том, что визуализация содержит некий элемент оценки того, что человек видит, то есть сопровождается пониманием. Чтобы проиллю­стрировать, что я имею в виду, давайте рассмотрим одно эле­ментарное арифметическое правило, а именно: для любых двух натуральных чисел (т.е. неотрицательных целых чисел 0, 1, 2, 3, 4,...) а и b справедливо следующее равенство:

Следует пояснить, что это высказывание не является пустым, хотя части уравнения и имеют различный смысл. Запись слева означает совокупность а групп по b объектов в каждой; справа — b групп по а объектов в каждой. В частном случае, например, при запись можно представить следующим рядом точек:

в то время как для имеем

Общее число точек в каждом случае одинаково, следовательно, справедливо равенство

В истинности этого равенства можно удостовериться, пред­ставив зрительно матрицу

Читая матрицу по строкам, можно сказать, что в ней три строки, каждая из которых содержит по пять точек, что соответствует числуv . Однако если эту же матрицу прочесть по столбцам, то получится пять столбцов по три точки в каждом, что соответству­ет числу . Равенство этих чисел очевидно, поскольку речь в каждом случае идет об одной и той же прямоугольной матрице, просто мы ее по-разному читаем. (Есть и альтернативный вари­ант: мы можем мысленно повернуть изображение на прямой угол и убедиться в том, что матрица, соответствующая числу , содержит то же количество элементов, что и матрица, соответ­ствующая числу .)

Важный момент описанной визуализации заключается в том, что она непосредственно дает нам нечто гораздо более общее, чем просто частное численное равенство . Иными словами, в конкретных числовых значениях , участвующих в данной процедуре, нет ничего особенного. Полученное правило будет применимо, даже если, скажем, , а b = 50 000123 555, и мы с уверенностью можем утверждать, что несмотря на то, что у нас нет ни малейшей возможности сколько-нибудь точно представить себе визуально прямоугольную мат­рицу такого размера (да и ни один современный компьютер не сможет перечислить все ее элементы). Мы вполне можем заклю­чить, что вышеприведенное равенство должно быть истинным — или что истинным должно быть равенство общего вида — на основании, в сущности, той же самой визуализации, которую мы применяли для конкретного случая Нужно просто несколько «размыть» мысленно действительное количество строк и столбцов рассматриваемой матрицы, и равен­ство становится очевидным.

Я вовсе не хочу сказать, что все математические отношения можно с помощью верной визуализации непосредственно пости­гать как «очевидные», или же что их просто можно в любом случае постичь каким-то иным способом, основанным непосред­ственно на интуиции. Это далеко не так. Для уверенного понима­ния некоторых математических отношений необходимо строить весьма длинные цепочки умозаключений. Цель математического доказательства, по сути дела, в этом и заключается — мы стро­им цепочки умозаключений таким образом, чтобы на каждом этапе получать утверждение, допускающее «очевидное» пони­мание. Как следствие, конечной точкой умозаключения должно оказаться суждение, которое необходимо принимать как истин­ное, пусть даже оно само по себе вовсе и не очевидно.

Кое-кто, наверное, уже вообразил, что в таком случае можно раз и навсегда составить список всех «возможных» этапов умо­заключений и тогда всякое доказательство можно будет свести к вычислению, т. е. к простым механическим манипуляциям полу­ченными очевидными этапами. Доказательство Гёделя как раз и демонстрирует невозможность реализации такой процеду­ры. Нельзя совершенно избавиться от необходимости в новых «очевидно понимаемых» отношениях. Таким образом, матема­тическое понимание никоим образом не сводится к бездумному вычислению.

– Конец работы –

Эта тема принадлежит разделу:

Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления

Http hotmix narod ru... РОДЖЕР ПЕНРОУЗ... Тени разума В поисках науки о сознании...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Какое отношение имеет теорема Гёделя к «бытовым» действиям?

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Разум и наука
Насколько широки доступные науке пределы? Подвластны ли ее методам лишь материальные свойства нашей Вселенной, тогда как познанию нашей духовной сущности суждено навеки остаться за ра

Спасут ли роботы этот безумный мир?
Открывая газету или включая телевизор, мы всякий раз рис­куем столкнуться с очередным проявлением человеческой глупо­сти. Целые страны или отдельные их области пребывают в вечной конфронтации, кото

Вычисление и сознательное мышление
В чем же здесь загвоздка? Неужели все дело лишь в вычис­лительных способностях, в скорости и точности работы, в объеме памяти или, быть может, в конкретном способе «связи» отдель­ных структурных эл

Физикализм и ментализм
Я должен сделать здесь краткое отступление касательно использования терминов «физикалист» и «менталист», обыч­но противопоставляемых один другому, в нашей конкретной ситуации, т. е. в отношении кра

Вычисление: нисходящие и восходящие процедуры
До сих пор было не совсем ясно, что именно я понимаю под термином «вычисление» в определениях позиций

Противоречит ли точка зрения В тезису Черча—Тьюринга?
Вспомним, что точка зрения предполагает, что обладаю­щий сознанием мозг функционирует так

Аналоговые вычисления
До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга.

Невычислительные процессы
Из всех типов вполне определенных процессов, что приходят в голову, большая часть относится, соответственно, к категории феноменов, называемых мною «вычислительными» (имеются в виду, конечно же, «ц

Завтрашний день
Так какого же будущего для этой планеты нам следует ожи­дать согласно точкам зрения . Есл

Обладают ли компьютеры правами и несут ли ответственность?
С некоторых пор умы теоретиков от юриспруденции начал занимать один вопрос, имеющий самое непосредственное отно­шение к теме нашего разговора, но в некотором смысле более практический). Суть

Доказательство Джона Серла
Прежде чем представить свое собственное рассуждение, хотелось бы вкратце упомянуть о совсем иной линии доказа­тельства — знаменитой «китайской комнате» философа Джона Серла — главным образом для то

Свидетельствуют ли ограниченные возможности сегодняшнего ИИ в пользу ?
Но почему вдруг ? Чем мы реально располагаем, что мож­но было бы интерпретировать

Платонизм или мистицизм?
Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вы

Почему именно математическое понимание?
Все эти благоглупости, конечно, очень (или не очень) заме­чательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы мате­матики и философии ма

Реальность
Интуитивные математические процедуры, описанные в имеют весьма ярко выраженный специфиче

Воображение?
Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычис­лительным путем. Даже если визуализация действительно осу­ществляется посредством к

Теорема Гёделя и машины Тьюринга
В наиболее чистом виде мыслительные процессы проявля­ются в сфере математики. Если же мышление сводится к вы­полнению тех или иных вычислений, то математическое мыш­ление, по всей видимости,

Вычисления
В этом разделе мы поговорим о вычислениях. Под вычис­лением (или алгоритмом) я подразумеваю действие некоторой машины Тьюринга, или, иными словами, действие компьютера, задаваемое той или ин

Незавершающиеся вычисления
Будем считать, что с задачей (А) нам просто повезло. По­пробуем решить еще одну: (B) Найти число, не являющееся суммой квадратов четырех чи­сел. На этот раз, добравшись до числа 7

Как убедиться в невозможности завершить вычисление?
Мы установили, что вычисления могут как успешно завер­шаться, так и вообще не иметь конца. Более того, в тех слу­чаях, когда вычисление завершиться в принципе не может, это его свойство иногда оказ

Семейства вычислений; следствие Гёделя — Тьюринга
Для того, чтобы понять, каким образом из теоремы Гёделя (в моей упрощенной формулировке, навеянной отчасти идеями Тьюринга) следует все вышесказанное, нам необходимо будет сделать небольшое обобщен

Некоторые более глубокие математические соображения
Для того чтобы лучше разобраться в значении гёделевского доказательства, полезно будет вспомнить, с какой, собственно, целью оно было первоначально предпринято. На рубеже веков ученые, деятельность

Условие -непротиворечивости
Наиболее известная форма теоремы Гёделя гласит, что фор­мальная система F (достаточно обширная) не может быть од­новременно полной и непротиворечивой. Это не совсем та зна­менитая «теорема о неполн

Формальные системы и алгоритмическое доказательство
В предложенной мною формулировке доказательства Гёделя—Тьюринга (см. §2.5) говорится только о «вычислениях» и ни словом не упоминается о «формальных системах». Тем не ме­нее, между этими двумя конц

ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ
Допустим, что у нас имеется некая алгоритмическая про­цедура А, которая, как нам известно, корректно устанавливает незавершаемость тех или иных вычислений. Мы получим вполне явную процедуру

Гёдель и Тьюринг
В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой ^), суть которого заключается в том, что математическое пониман

О психофизи(ологи)ческой проблеме
  Комментарии Ю.П.Карпенко к книге Р.Пенроуза: Тени ума: В поисках потерянной науки о сознании.   Как мы видим, выд

PENROSE R. Shadows of the mind: A search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.
  Реферат подготовлен Ю.П.Карпенко   В реферируемой книге крупного английского математика и физика-теоретика Роджера Пенроуза развиваются ид

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги