рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Формальные системы и алгоритмическое доказательство

Формальные системы и алгоритмическое доказательство - раздел Физика, Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления В Предложенной Мною Формулировке Доказательства Гёделя—Тьюринга (См. §2.5) Го...

В предложенной мною формулировке доказательства Гёделя—Тьюринга (см. §2.5) говорится только о «вычислениях» и ни словом не упоминается о «формальных системах». Тем не ме­нее, между этими двумя концепциями существует очень тесная связь. Одним из существенных свойств формальной системы яв­ляется непременная необходимость существования алгоритмиче­ской (т. е. «вычислительной») процедуры F, предназначенной для проверки правильности применения правил этой системы. Если, в соответствии с правилами системы F, некое высказывание яв­ляется ИСТИННЫМ, то вычисление F этот факт установит. (Для достижения этого результата вычисление F, возможно, «про­смотрит» все возможные последовательности строк символов, принадлежащих «алфавиту» системы F, и успешно завершится, обнаружив заключительной строкой искомое высказывание Р; при этом любые сочетания строк символов являются, согласно правилам системы F, допустимыми.)

Напротив, располагая некоторой заданной вычислитель­ной процедурой Е, предназначенной для установления истинно­сти определенных математических утверждений, мы можем по­строить формальную систему Е, которая эффективно выражает как ИСТИННЫЕ все те истины, что можно получить с помощью процедуры Е. Имеется, впрочем, и небольшая оговорка: как пра­вило, формальная система должна содержать стандартные логические операции, однако заданная процедура Е может оказаться недостаточно обширной, чтобы непосредственно включить и их. Если сама заданная процедура Е не содержит этих элементарных логических операций, то при построении системы Е уместно будет присоединить их к Е с тем, чтобы ИСТИННЫМИ положениями системы Е оказались не только утверждения, получаемые непо­средственно из процедуры Е, но и утверждения, являющиеся эле­ментарными логическими следствиями утверждений, получаемых непосредственно из Е. При таком построении система Е не будет строго эквивалентна процедуре Е, но вместо этого приобретет несколько большую мощность.

(Среди таких логических операций могут, к примеру, ока­заться следующие: «если Р&Q, то Р»; «если Р и Р => Q, то Q»; «если , то Р(п)»; «если , то » и т. п. Символы «&», «=>», « », « », «~» означают здесь, соот­ветственно, «и», «следует», «для всех [натуральных чисел]», «су­ществует [натуральное число]», «не»; в этот ряд можно включить и некоторые другие аналогичные символы.)

Поставив перед собой задачу построить на основе проце­дуры Е формальную систему Е, мы можем начать с некоторой в высшей степени фундаментальной (и, со всей очевидностью, непротиворечивой) формальной системы L, в рамках которой выражаются лишь вышеупомянутые простейшие правила логи­ческого вывода, — например, с так называемого исчисления предикатов (см. [222]), которое только на это и способно, — и построить систему Е посредством присоединения к системе L процедуры Е в виде дополнительных аксиом и правил процедуры для L, переведя тем самым всякое высказывание Р, получае­мое из процедуры Е, в разряд ИСТИННЫХ. Это, впрочем, вовсе не обязательно окажется легко достижимым на практике. Если процедура Е задается всего лишь в виде спецификации машины Тьюринга, то нам, возможно, придется присоединить к систе­ме L (как часть ее алфавита и правил процедуры) все необхо­димые обозначения и операции машины Тьюринга, прежде чем мы сможем присоединить саму процедуру Е в качестве, по су­ти, дополнительной аксиомы. (См. окончание §2.8; подробности в [222].)

Собственно говоря, в нашем случае не имеет большого зна­чения, содержит ли система Е, которую мы таким образом стро­им, ИСТИННЫЕ предположения, отличные от тех, что можно получить непосредственно из процедуры Е (да и примитивные логические правила системы L вовсе не обязательно должны яв­ляться частью заданной процедуры Е). В § 2.5 мы рассматривали гипотетический алгоритм А, который по определению включал в себя все процедуры (известные или познаваемые), которыми располагают математики для установления факта незавершаемости вычислений. Любому подобному алгоритму неизбежно при­дется, помимо всего прочего, включать в себя и все основные операции простого логического вывода. Поэтому в дальнейшем я буду подразумевать, что все эти вещи в алгоритме А изначально присутствуют.

Следовательно, как процедуры для установления математи­ческих истин, алгоритмы (т. е. вычислительные процессы) и фор­мальные системы для нужд моего доказательства, в сущности, эквивалентны. Таким образом, несмотря на то, что представ­ленное в §2.5 доказательство было сформулировано исключи­тельно для вычислений, оно сгодится и для общих формальных систем. В том доказательстве, если помните, речь шла о сово­купности всех вычислениях (действий машины Тьюринга) Cq (п). Следовательно, для того чтобы оно оказалось во всех отношени­ях применимо к формальной системе F, эта система должна быть достаточно обширной для того, чтобы включать в себя действия всех машин Тьюринга. Алгоритмическую процедуру А, предна­значенную для установления факта незавершаемости некоторых вычислений, мы можем теперь добавить к правилам системы F с тем, чтобы вычисления, предположения о незавершающемся характере которых устанавливаются в рамках F как ИСТИННЫЕ, были бы тождественны всем тем вычислениям, незавершаемость которых определяется с помощью процедуры А.

Как же первоначальное кенигсбергское доказательство Гёде-ля связано с тем, что я представил в § 2.5? Не будем углубляться в детали, укажем лишь на наиболее существенные моменты. В роли формальной системы F из исходной теоремы Гёделя выступает наша алгоритмическая процедура А:

алгоритм А <—> правила системы F.

Роль же представленного Гёделем в Кенигсберге предположения G (F), которое в действительности утверждает непротиворе­чивость системы F, играет полученное в §2.5 конкретное пред­положение «вычисление Ck (k) не завершается», недоказуемое посредством процедуры А, но интуитивно представляющееся ис­тинным, коль скоро процедуру A мы полагаем обоснованной:

утверждение «вычисление Ck (k) не завершается» <—> утверждение «система F непротиворечива».

Возможно, такая замена позволит лучше понять, каким об­разом убежденность в обоснованности процедуры — такой, на­пример, как А — может привести к другой процедуре, с исходной никак не связанной, но в обоснованности которой мы также должны быть убеждены. Поскольку если мы полагаем процедуры некоторой формальной системы F обоснованными — т. е. проце­дурами, с помощью которых мы получаем одни лишь действи­тельные математические истины, полностью исключив ложные утверждения; иными словами, если некое предположение Р вы­водится из такой процедуры как ИСТИННОЕ, то это значит, что оно и в самом деле должно быть истинным, — то мы долж­ны также уверовать и в ^-непротиворечивость системы F. Если под «ИСТИННЫМ» понимать «истинное», а под «ЛОЖНЫМ» — «ложное» (как оно, собственно, и есть в рамках любой обосно­ванной формальной системы F), то безусловно истинно следующее утверждение:

не все предположения Р (0), Р (1), Р (2), Р(3), Р (4), ... могут быть ИСТИННЫМИ, если утверждение «предположение Р (п) справедливо для всех натуральных чисел п» ЛОЖНО, что в точности совпадает с условием -непротиворечивости.

Однако убежденность в w-непротиворечивости формальной системы F может происходить не только из убежденности в об­основанности этой системы, но и из убежденности в ее обыкно­венной непротиворечивости. Поскольку если под «истинным» понимать «истинное», а под «ЛОЖНЫМ» — «ложное», то, несо­мненно, выполняется следующее условие:

ни одно предположение Р не может быть одновременно и ИСТИННЫМ, и ЛОЖНЫМ,

в точности совпадающее с условием непротиворечивости. Вооб­ще говоря, во многих случаях различия между непротиворечи­востью и ^-непротиворечивостью практически отсутствуют. Для упрощения дальнейших рассуждений этой главы я, в общем слу­чае, не стану разделять эти два типа непротиворечивости и буду обычно говорить просто о «непротиворечивости». Суть доказа­тельства Гёделя и Россера сводится к тому, что установление факта непротиворечивости формальной системы (достаточно об­ширной) превышает возможности этой самой формальной систе­мы. Первоначальный (кенигсбергский) вариант теоремы Гёделя опирался только на w-непротиворечивость, однако следующий, более известный, вывод был связан уже исключительно с непро­тиворечивостью обыкновенной.

Сущность гёделевского доказательства в нашем случае со­стоит в том, что оно показывает, как выйти за рамки любого заданного набора вычислительных правил, полагаемых обосно­ванными, и получить некое дополнительное правило, в исходном наборе отсутствующее, которое также должно полагать обосно­ванным, — т. е. правило, утверждающее непротиворечивость исходных правил. Важно уяснить следующий существенный мо­мент:

убежденность в обоснованности равносильна убежденности в непротиворечивости.

Мы имеем право применять правила формальной системы F и полагать, что выводимые из нее результаты действительно ис­тинны, только в том случае, если мы также полагаем, что эта формальная система непротиворечива. (Например, если бы си­стема F не была непротиворечивой, то мы могли бы вывести, как ИСТИННОЕ, утверждение «1 = 2», которое истинным, разу­меется, не является!) Таким образом, если мы уверены, что при­менение правил некоторой формальной системы F действительно эквивалентно математическому рассуждению, то следует быть готовым принять и рассуждение, выходящее за рамки системы F, какой бы эта система F ни была.

2.10. Возможные формальные возражения против (продолжение)

Продолжим рассмотрение различных математических воз­ражений, высказываемых время от времени в отношении моей трактовки доказательства Гёделя—Тьюринга. Многие из них тес­но связаны друг с другом, однако я полагаю, что в любом случае их будет полезно разъяснить по отдельности.

– Конец работы –

Эта тема принадлежит разделу:

Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления

Http hotmix narod ru... РОДЖЕР ПЕНРОУЗ... Тени разума В поисках науки о сознании...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Формальные системы и алгоритмическое доказательство

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Разум и наука
Насколько широки доступные науке пределы? Подвластны ли ее методам лишь материальные свойства нашей Вселенной, тогда как познанию нашей духовной сущности суждено навеки остаться за ра

Спасут ли роботы этот безумный мир?
Открывая газету или включая телевизор, мы всякий раз рис­куем столкнуться с очередным проявлением человеческой глупо­сти. Целые страны или отдельные их области пребывают в вечной конфронтации, кото

Вычисление и сознательное мышление
В чем же здесь загвоздка? Неужели все дело лишь в вычис­лительных способностях, в скорости и точности работы, в объеме памяти или, быть может, в конкретном способе «связи» отдель­ных структурных эл

Физикализм и ментализм
Я должен сделать здесь краткое отступление касательно использования терминов «физикалист» и «менталист», обыч­но противопоставляемых один другому, в нашей конкретной ситуации, т. е. в отношении кра

Вычисление: нисходящие и восходящие процедуры
До сих пор было не совсем ясно, что именно я понимаю под термином «вычисление» в определениях позиций

Противоречит ли точка зрения В тезису Черча—Тьюринга?
Вспомним, что точка зрения предполагает, что обладаю­щий сознанием мозг функционирует так

Аналоговые вычисления
До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга.

Невычислительные процессы
Из всех типов вполне определенных процессов, что приходят в голову, большая часть относится, соответственно, к категории феноменов, называемых мною «вычислительными» (имеются в виду, конечно же, «ц

Завтрашний день
Так какого же будущего для этой планеты нам следует ожи­дать согласно точкам зрения . Есл

Обладают ли компьютеры правами и несут ли ответственность?
С некоторых пор умы теоретиков от юриспруденции начал занимать один вопрос, имеющий самое непосредственное отно­шение к теме нашего разговора, но в некотором смысле более практический). Суть

Доказательство Джона Серла
Прежде чем представить свое собственное рассуждение, хотелось бы вкратце упомянуть о совсем иной линии доказа­тельства — знаменитой «китайской комнате» философа Джона Серла — главным образом для то

Свидетельствуют ли ограниченные возможности сегодняшнего ИИ в пользу ?
Но почему вдруг ? Чем мы реально располагаем, что мож­но было бы интерпретировать

Платонизм или мистицизм?
Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вы

Почему именно математическое понимание?
Все эти благоглупости, конечно, очень (или не очень) заме­чательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы мате­матики и философии ма

Какое отношение имеет теорема Гёделя к «бытовым» действиям?
Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получе­нии осознанных же математических решений в нашем мозге дей­ствительно происходит что

Реальность
Интуитивные математические процедуры, описанные в имеют весьма ярко выраженный специфиче

Воображение?
Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычис­лительным путем. Даже если визуализация действительно осу­ществляется посредством к

Теорема Гёделя и машины Тьюринга
В наиболее чистом виде мыслительные процессы проявля­ются в сфере математики. Если же мышление сводится к вы­полнению тех или иных вычислений, то математическое мыш­ление, по всей видимости,

Вычисления
В этом разделе мы поговорим о вычислениях. Под вычис­лением (или алгоритмом) я подразумеваю действие некоторой машины Тьюринга, или, иными словами, действие компьютера, задаваемое той или ин

Незавершающиеся вычисления
Будем считать, что с задачей (А) нам просто повезло. По­пробуем решить еще одну: (B) Найти число, не являющееся суммой квадратов четырех чи­сел. На этот раз, добравшись до числа 7

Как убедиться в невозможности завершить вычисление?
Мы установили, что вычисления могут как успешно завер­шаться, так и вообще не иметь конца. Более того, в тех слу­чаях, когда вычисление завершиться в принципе не может, это его свойство иногда оказ

Семейства вычислений; следствие Гёделя — Тьюринга
Для того, чтобы понять, каким образом из теоремы Гёделя (в моей упрощенной формулировке, навеянной отчасти идеями Тьюринга) следует все вышесказанное, нам необходимо будет сделать небольшое обобщен

Некоторые более глубокие математические соображения
Для того чтобы лучше разобраться в значении гёделевского доказательства, полезно будет вспомнить, с какой, собственно, целью оно было первоначально предпринято. На рубеже веков ученые, деятельность

Условие -непротиворечивости
Наиболее известная форма теоремы Гёделя гласит, что фор­мальная система F (достаточно обширная) не может быть од­новременно полной и непротиворечивой. Это не совсем та зна­менитая «теорема о неполн

ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ
Допустим, что у нас имеется некая алгоритмическая про­цедура А, которая, как нам известно, корректно устанавливает незавершаемость тех или иных вычислений. Мы получим вполне явную процедуру

Гёдель и Тьюринг
В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой ^), суть которого заключается в том, что математическое пониман

О психофизи(ологи)ческой проблеме
  Комментарии Ю.П.Карпенко к книге Р.Пенроуза: Тени ума: В поисках потерянной науки о сознании.   Как мы видим, выд

PENROSE R. Shadows of the mind: A search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.
  Реферат подготовлен Ю.П.Карпенко   В реферируемой книге крупного английского математика и физика-теоретика Роджера Пенроуза развиваются ид

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги