рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ

ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ - раздел Физика, Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления Допустим, Что У Нас Имеется Некая Алгоритмическая Про­цедура А, Котора...

Допустим, что у нас имеется некая алгоритмическая про­цедура А, которая, как нам известно, корректно устанавливает незавершаемость тех или иных вычислений. Мы получим вполне явную процедуру для построения на основе процедуры А кон­кретного вычисления С, для которого А оказывается неадекват­ной; при этом мы сможем убедиться, что вычисление С действи­тельно не завершается. Приняв это явное выражение для С, мы сможем определить степень его сложности и сравнить ее со сложностью процедуры А, чего требуют аргументы §2.6 (возра­жение Q8) и §3.20.

Для определенности я воспользуюсь спецификациями той конкретной машины Тьюринга, которую я описал в НРК. По­дробное описание этих спецификаций читатель сможет найти в этой работе. Здесь же я дам лишь краткое описание, которого вполне должно хватить для наших настоящих целей.

Машина Тьюринга имеет конечное число внутренних состо­яний, но производит все операции на бесконечной ленте. Эта лен­та представляет собой линейную последовательность «ячеек», причем каждая ячейка может быть маркированной или пустой, а общее количество отметок на ленте — величина конечная. Обо­значим каждую маркированную ячейку символом 1, а каждую пустую ячейку — 0. В машине Тьюринга имеется также считы­вающее устройство, которое поочередно рассматривает отметки и, в явной зависимости от внутреннего состояния машины Тью­ринга и характера рассматриваемой в данный момент отметки, определяет дальнейшие действия машины по следующим трем пунктам: (i) следует ли изменить рассматриваемую в данный мо­мент отметку; (ii) каким будет новое внутреннее состояние ма­шины; (iii) должно ли устройство сдвинуться по ленте на один шаг вправо (обозначим это действие через R) или влево (обозна­чим через L), или же на один шаг вправо с остановкой машины (STOP). Когда машина, в конце концов, остановится, на лен­те слева от считывающего устройства будет представлен в виде последовательности символов 0 и 1 ответ на выполненное ею вычисление. Изначально лента должна быть абсолютно чистой, за исключением отметок, описывающих исходные данные (в виде конечной строки символов 1 и 0), над которыми машина и бу­дет выполнять свои операции. Считывающее устройство в начале работы располагается слева от всех отметок.

При представлении на ленте натуральных чисел (будь то входные или выходные данные) иногда удобнее использовать так называемую расширенную двоичную запись, согласно которой число, в сущности, записывается в обычной двоичной системе счисления, только двоичный знак «1» представляется символа­ми 10, а двоичный знак «0» — символом 0. Таким образом, мы получаем следующую схему перевода десятичных чисел в расши­ренные двоичные:

0 <-> 0
1 <-> 10
2 <-> 100
3 <-> 1010
4 <-> 1000
5 <-> 10010
6 <-> 10100
7 <-> 101010
8 <-> 10000
9 <-> 100010
10 <-> 100100
11 <-> 1001010
12 <-> 101000
13 <-> 1010010
14 <-> 1010100
15 <-> 10101010
16 <-> 100000
17 <-> 1000010
и т.д.

 

Заметим, что в расширенной двоичной записи символы 1 никогда не встречаются рядом. Таким образом, последовательность из двух или более 1 вполне может послужить сигналом о начале и конце записи натурального числа. То есть для записи всевозмож­ных команд на ленте мы можем использовать последовательно­сти типа 110, 1110, 11110 и т. д.

Отметки на ленте также можно использовать для специ­фикации конкретных машин Тьюринга. Это необходимо, когда мы рассматриваем работу универсальной машины Тьюринга U. Универсальная машина U работаете лентой, начальная часть ко­торой содержит подробную спецификацию некоторой конкретной машины Тьюринга Т, которую универсальной машине предстоит смоделировать. Данные, с которыми должна работать сама ма­шина Т, подаются в U вслед за тем участком ленты, который определяет машину Т. Для спецификации машины Т можно ис­пользовать последовательности 110, 1110 и 11110, ко­торые будут обозначать, соответственно, различные команды для считывающего устройства машины Т, например: переместиться по ленте на один шаг вправо, на один шаг влево, либо остано­виться, сдвинувшись на один шаг вправо:

R <-> 110

L <-> 1110

STOP <->11110.

Каждой такой команде предшествует либо символ 0, либо последовательность 1 0, что означает, что считывающее устрой­ство должно пометить ленту, соответственно, либо символом О, либо 1, заменив тот символ, который оно только что считало. Непосредственно перед вышеупомянутыми 0 или 1 0 распола­гается расширенное двоичное выражение числа, описывающе­го следующее внутреннее состояние, в которое должна перейти машина Тьюринга согласно этой самой команде. (Отметим, что внутренние состояния, поскольку количество их конечно, можно обозначать последовательными натуральными числами 0, 1, 2, 3, 4, 5, 6, . . . , N. При кодировании на ленте для обозначения этих чисел будет использоваться расширенная двоичная запись.)

Конкретная команда, к которой относится данная опера­ция, определяется внутренним состоянием машины перед началом считывания ленты и собственно символами 0 или 1, ко­торые наше устройство при следующем шаге считает и, воз­можно, изменит. Например, частью описания машины Т мо­жет оказаться команда 230 —> 17lR, что означает следую­щее: «Если машина Т находится во внутреннем состоянии 23, а считывающее устройство встречает на ленте символ 0, то его следует заменить символом 1, перейти во внутреннее состоя­ние 17 и переместиться по ленте на один шаг вправо». В этом случае часть «171R» данной команды будет кодироваться по­следовательностью 100001010110. Разбив ее на участ­ки 1000010.10.110, мы видим, что первый из них представляет собой расширенную двоичную запись числа 17, второй кодирует отметку 1 на ленте, а третий — команду «пе­реместиться на шаг вправо». А как нам описать предыдущее внутреннее состояние (в данном случае 23) и считываемую в со­ответствующий момент отметку на ленте (в данном случае 0)? При желании можно задать их так же явно с помощью расши­ренной двоичной записи. Однако, в действительности, в этом нет необходимости, поскольку для этого будет достаточно упорядо­чить различные команды в виде цифровой последовательности (например, такой: 00 ->, Ol -> , 10 ->, 11 ->, 20 -> , 21 ->, 30->,...).

К этому, в сущности, и сводится все кодирование машин Тьюринга, предложенное в НРК, однако для завершенности кар­тины необходимо добавить еще несколько пунктов. Прежде все­го, следует проследить за тем, чтобы каждому внутреннему со­стоянию, действующему на отметки 0 и 1 (не забывая, впро­чем, о том, что команда для внутреннего состояния с наиболь­шим номером, действующая на 1, оказывается необходимой не всегда), была сопоставлена какая-либо команда. Если та или иная команда вообще не используется в программе, то необхо­димо заменить ее «пустышкой». Предположим, например, что в ходе выполнения программы внутреннему состоянию 23 ни­где не придется сталкиваться с отметкой 1 — соответствую­щая команда-пустышка в этом случае может иметь следующий вид: 231->00R.

Согласно вышеприведенным предписаниям, в кодированной спецификации машины Тьюринга на ленте пара символов 00 должна быть представлена последовательностью 00, однако можно поступить более экономно и записать просто 0, что явит­ся ничуть не менее однозначным разделителем двух последова­тельностей, составленных из более чем одного символа 1 под­ряд. Машина Тьюринга начинает работу, находясь во внутрен­нем состоянии 0; считывающее устройство движется по ленте, сохраняя это внутреннее состояние до тех пор, пока не встретит первый символ 1. Это обусловлено допущением, что в набор ко­манд машины Тьюринга всегда входит операция 00 -> OOR. Та­ким образом, в действительной спецификации машины Тьюринга в виде последовательности 0 и 1 явного задания этой команды не требуется; вместо этого мы начнем с команды 0l —> X, где X обозначает первую нетривиальную операцию запущенной маши­ны, т. е. первый символ 1, встретившийся ей на ленте. Это значит, что начальную последовательность 110 (команду —> 00R), ко­торая в противном случае непременно присутствовала бы в опре­деляющей машину Тьюринга последовательности, можно спо­койно удалить. Более того, в такой спецификации мы будем все­гда удалять и завершающую последовательность 110, так как она одинакова для всех машин Тьюринга.

Получаемая в результате последовательность символов О и 1 представляет собой самую обыкновенную (т. е. нерасширен­ную) двоичную запись номера машины Тьюринга п для дан­ной машины (см. главу 2 НРК). Мы называем ее n-й машиной Тьюринга и обозначаем Т = Тn. Каждый такой двоичный номер (с добавлением в конце последовательности 110) есть после­довательность символов 0 и 1, в которой нигде не встречается более четырех 1 подряд. Номер n, не удовлетворяющий данному условию, определяет «фиктивную машину Тьюринга», которая прекратит работать, как только встретит «команду», содержа­щую более четырех 1. Такую машину «Тn» мы будем называть некорректно определенной. Ее работа с какой угодно лен­той является по определению незавершающейся. Аналогично, если действующая машина Тьюринга встретит команду перехода в состояние, определенное числом, большим всех тех чисел, для которых были явно заданы возможные последующие действия, то она также «зависнет»: такую машину мы будем полагать «фик­тивной», а ее работу — незавершающейся. (Всех этих неудобств можно без особого труда избежать с помощью тех или иных технических средств, однако реальной необходимости в этом нет; CM.§2.6,Q4).

Для того чтобы понять, как на основе заданного алгоритма А построить явное незавершающееся вычисление, факт незавершаемости которого посредством алгоритма А установить невоз­можно, необходимо предположить, что алгоритм А задан в виде машины Тьюринга. Эта машина работает с лентой, на которой кодируются два натуральных числа p и q. Мы полагаем, что если завершается вычисление А(р, q), то вычисление, производимое машиной Тр с числом q, не завершается вовсе. Вспомним, что если машина Тр определена некорректно, то ее работа с числом q не завершается, каким бы это самое q ни было. В случае тако­го «запрещенного» р исход вычисления А(р, q) может, согласно исходным допущениям, быть каким угодно. Соответственно, нас будут интересовать исключительно те числа р, для которых ма­шина Tp определена корректно. Таким образом, в записанном на ленте двоичном выражении числа р пяти символов 1 подряд содержаться не может. Значит, для обозначения на ленте начала и конца числа р мы вполне можем воспользоваться последова­тельностью 11111.

То же самое, очевидно, необходимо сделать и для числа q, причем оно вовсе не обязательно должно быть числом того же типа, что и р. Здесь перед нами возникает техническая проблема, связанная с чрезвычайной громоздкостью машинных предписа­ний в том виде, в каком они представлены в НРК. Удобным ре­шением этой проблемы может стать запись чисел р и q в пяте­ричной системе счисления. (В этой системе запись «10» озна­чает число пять, «100» — двадцать пять, «44» — двадцать четыре и т.д.) Однако вместо пятеричных цифр 0, 1, 2, 3 и 4 я воспользуюсь соответствующими последовательностями симво­лов на ленте 0, 10, 110, 1110 и 11110. Таким образом, мы будем записывать

0 как 0

1 “ 10

2 “ 110

3 “ 1110

4 “ 11110

5 “ 100

6 “ 1010

7 “ 10110

8 “ 101110

9 “ 1011110

10 “ 1100

11 “ 11010

12 “ 110110

13 “ 1101110

14 “ 11011110

15 “ 11100

16 “ 111010

… …

25 “ 1000

26 “ 10010

и т.д.

Под «Ср» здесь будет пониматься вычисление, выполняемое корректно определенной машиной Тьюринга Тг, где г есть число, обыкновенное двоичное выражение которого (с добавлением в конце последовательности символов 110) в точности совпадает с числом р в нашей пятеричной записи. Число q, над которым производится вычисление Ср, также необходимо представлять в пятеричном выражении. Вычисление же А(р, q) задается в виде машины Тьюринга, выполняющей действие с лентой, на которой кодируется пара чисел р, q. Запись на ленте будет выглядеть следующим образом:

...00111110p111110q11111000...,

где p и q суть вышеописанные пятеричные выражения чисел, соответственно, р и q.

Требуется отыскать такие числа р и д, для которых не за­вершается не только вычисление Ср (q), но и вычисление А(р, д). Процедура из § 2.5 позволяет сделать это посредством отыскания такого числа k, при котором вычисление Ck, производимое с чис­лом п, в точности совпадает с вычислением А(п, п) при любом п, и подстановки р — q = k. Для того чтобы проделать это же в явном виде, отыщем машинное предписание К (— Ck), действие которого на последовательность символов на ленте

– Конец работы –

Эта тема принадлежит разделу:

Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления

Http hotmix narod ru... РОДЖЕР ПЕНРОУЗ... Тени разума В поисках науки о сознании...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Разум и наука
Насколько широки доступные науке пределы? Подвластны ли ее методам лишь материальные свойства нашей Вселенной, тогда как познанию нашей духовной сущности суждено навеки остаться за ра

Спасут ли роботы этот безумный мир?
Открывая газету или включая телевизор, мы всякий раз рис­куем столкнуться с очередным проявлением человеческой глупо­сти. Целые страны или отдельные их области пребывают в вечной конфронтации, кото

Вычисление и сознательное мышление
В чем же здесь загвоздка? Неужели все дело лишь в вычис­лительных способностях, в скорости и точности работы, в объеме памяти или, быть может, в конкретном способе «связи» отдель­ных структурных эл

Физикализм и ментализм
Я должен сделать здесь краткое отступление касательно использования терминов «физикалист» и «менталист», обыч­но противопоставляемых один другому, в нашей конкретной ситуации, т. е. в отношении кра

Вычисление: нисходящие и восходящие процедуры
До сих пор было не совсем ясно, что именно я понимаю под термином «вычисление» в определениях позиций

Противоречит ли точка зрения В тезису Черча—Тьюринга?
Вспомним, что точка зрения предполагает, что обладаю­щий сознанием мозг функционирует так

Аналоговые вычисления
До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга.

Невычислительные процессы
Из всех типов вполне определенных процессов, что приходят в голову, большая часть относится, соответственно, к категории феноменов, называемых мною «вычислительными» (имеются в виду, конечно же, «ц

Завтрашний день
Так какого же будущего для этой планеты нам следует ожи­дать согласно точкам зрения . Есл

Обладают ли компьютеры правами и несут ли ответственность?
С некоторых пор умы теоретиков от юриспруденции начал занимать один вопрос, имеющий самое непосредственное отно­шение к теме нашего разговора, но в некотором смысле более практический). Суть

Доказательство Джона Серла
Прежде чем представить свое собственное рассуждение, хотелось бы вкратце упомянуть о совсем иной линии доказа­тельства — знаменитой «китайской комнате» философа Джона Серла — главным образом для то

Свидетельствуют ли ограниченные возможности сегодняшнего ИИ в пользу ?
Но почему вдруг ? Чем мы реально располагаем, что мож­но было бы интерпретировать

Платонизм или мистицизм?
Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вы

Почему именно математическое понимание?
Все эти благоглупости, конечно, очень (или не очень) заме­чательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы мате­матики и философии ма

Какое отношение имеет теорема Гёделя к «бытовым» действиям?
Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получе­нии осознанных же математических решений в нашем мозге дей­ствительно происходит что

Реальность
Интуитивные математические процедуры, описанные в имеют весьма ярко выраженный специфиче

Воображение?
Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычис­лительным путем. Даже если визуализация действительно осу­ществляется посредством к

Теорема Гёделя и машины Тьюринга
В наиболее чистом виде мыслительные процессы проявля­ются в сфере математики. Если же мышление сводится к вы­полнению тех или иных вычислений, то математическое мыш­ление, по всей видимости,

Вычисления
В этом разделе мы поговорим о вычислениях. Под вычис­лением (или алгоритмом) я подразумеваю действие некоторой машины Тьюринга, или, иными словами, действие компьютера, задаваемое той или ин

Незавершающиеся вычисления
Будем считать, что с задачей (А) нам просто повезло. По­пробуем решить еще одну: (B) Найти число, не являющееся суммой квадратов четырех чи­сел. На этот раз, добравшись до числа 7

Как убедиться в невозможности завершить вычисление?
Мы установили, что вычисления могут как успешно завер­шаться, так и вообще не иметь конца. Более того, в тех слу­чаях, когда вычисление завершиться в принципе не может, это его свойство иногда оказ

Семейства вычислений; следствие Гёделя — Тьюринга
Для того, чтобы понять, каким образом из теоремы Гёделя (в моей упрощенной формулировке, навеянной отчасти идеями Тьюринга) следует все вышесказанное, нам необходимо будет сделать небольшое обобщен

Некоторые более глубокие математические соображения
Для того чтобы лучше разобраться в значении гёделевского доказательства, полезно будет вспомнить, с какой, собственно, целью оно было первоначально предпринято. На рубеже веков ученые, деятельность

Условие -непротиворечивости
Наиболее известная форма теоремы Гёделя гласит, что фор­мальная система F (достаточно обширная) не может быть од­новременно полной и непротиворечивой. Это не совсем та зна­менитая «теорема о неполн

Формальные системы и алгоритмическое доказательство
В предложенной мною формулировке доказательства Гёделя—Тьюринга (см. §2.5) говорится только о «вычислениях» и ни словом не упоминается о «формальных системах». Тем не ме­нее, между этими двумя конц

Гёдель и Тьюринг
В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой ^), суть которого заключается в том, что математическое пониман

О психофизи(ологи)ческой проблеме
  Комментарии Ю.П.Карпенко к книге Р.Пенроуза: Тени ума: В поисках потерянной науки о сознании.   Как мы видим, выд

PENROSE R. Shadows of the mind: A search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.
  Реферат подготовлен Ю.П.Карпенко   В реферируемой книге крупного английского математика и физика-теоретика Роджера Пенроуза развиваются ид

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги