рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Гёдель и Тьюринг

Гёдель и Тьюринг - раздел Физика, Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления В Главе 2 Была Предпринята Попытка Продемонстрировать Мощь И Строгий Характер...

В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой ^), суть которого заключается в том, что математическое понимание не может являться результатом при­менения какого-либо осмысленно осознаваемого и полностью достоверного алгоритма (или, что то же самое, алгоритмов; см. возражение Q1). В приводимых рассуждениях, однако, ни словом не упомянуто еще об одной возможности, существенно более се­рьезной и ничуть не противоречащей утверждению <£, а имен­но: убежденность математика в истинности своих выводов может оказаться результатом применения им некоего неизвестного и неосознаваемого алгоритма, или же, возможно, математик при­меняет какой-то вполне постижимый алгоритм, однако при этом не может знать наверняка (или хотя бы искренне верить), что вы­воды его являются целиком и полностью результатом применения этого самого алгоритма. Ниже я покажу, что, хотя подобные до­пущения и вполне приемлемы с логической точки зрения, вряд ли их можно счесть хоть сколько-нибудь правдоподобными.

Прежде всего следует указать на то, что тщательно вы­страивая последовательности умозаключений (вполне, заметим, осознанных) с целью установления той или иной математиче­ской истины, математики вовсе не считают, что они лишь слепо следуют неким неосознаваемым правилам, будучи при этом не

'Здесь я предполагаю, что если процедура А вообще завершается, то это свидетельствует об успешном установлении факта незавершаемости С (n). Если же Л «застревает» по какой-либо иной, нежели достижение «успеха», причине, то это означает, что в данном случае процедура А корректно завершиться не может. См. далее по тексту возражения Q3 и Q4, а также Приложение А, с. 191.

 

Собственно, точно такой же результат достигается посредством процедуры, выполняемой универсальной машиной Тьюринга над парой чисел д, п; см. При­ложение А и НРК, с. 51-57.

Термин «алгоритмизм», который (по своей сути) прекрасно подходит для обозначения «точки зрения i/» в моей классификации, был предложен Хао Ва­ном [376].

Приведение к абсурду (лат.), доказательство от противного. — Прим. перев.

Чтобы подчеркнуть, что я принимаю это обстоятельство во внимание, я от­сылаю читателя к Приложению А, где представлена явная вычислительная про­цедура (выполненная в соответствии с правилами, подробно описанными в НРК, глава 2) для получения операции Ck (К) машины Тьюринга посредством алгорит­ма А. Здесь предполагается, что алгоритм А задан в виде машины Тьюринга Та, определение же вычисления Ся (п) кодируется как операция машины Т„ над числом q, а затем над числом п.

Представление некоторых формальных систем включает в себя бесконеч­ное количество аксиом (они описываются через посредство структур, называе­мых «схемами аксиом»), однако, чтобы оставаться «формальной» в том смысле, какой вкладываю в это понятие я, система должна быть выразима в каком-то конечном виде — например, упомянутая система с бесконечным количеством аксиом должна порождаться конечным набором вычислительных правил. Это вполне возможно, и именно так и обстоит дело со стандартными формальными системами, которые применяются в математических доказательствах, — одной из таких систем является, например, знаменитая «формальная система Цермело— Френкеля» ZF, описывающая традиционную теорию множеств.

Пояснение к используемым здесь обозначениям можно найти в §2.8. Впро­чем, G (F) без ущерба для смысла рассуждения можно было бы везде заменить на Г2 (F), в чем мы убедимся ниже.

Источник цитаты мне, к сожалению, обнаружить не удалось. Однако, как справедливо заметил Рихард Йожа, точная формулировка слов Фейнмана не имеет никакого значения, поскольку послание, которое они несут, применимо и к ним самим!

Как и ранее, обозначение G (F) можно без каких бы то ни было последствий заменить на П (F). То же справедливо и для комментариев к Q15Q20.

Это означает, что при кодировании машины Тьюринга каждую последова­тельность ...110011… можно заменить на ...11011…В специ­фикации универсальной машины Тьюринга, описанной в НРК (см. примечание 7 после главы 2), имеется пятнадцать мест, где я этого не сделал. Решительно досадная оплошность с моей стороны, и это после того я приложил столько усилий для того, чтобы добиться (в рамках моих же собственных правил) по возможности наименьшего номера, определяющего эту универсальную машину. Упомянутая простая замена позволяет уменьшить мой номер более чем в 30000 раз! Я благодарен Стивену Ганхаусу за то, что он указал мне на этот недосмотр, а также за то, что он самостоятельно проверил всю представленную в НРК спе­цификацию и подтвердил, что она действительно определяет универсальную машину Тьюринга.

Более того, сам Тьюринг первоначально предполагал вообще останавли­вать машину всякий раз, когда она повторно переходит во внутреннее состо­яние «О» из любого другого состояния. В этом случае нам не только не пона­добилось бы вышеупомянутое ограничение, мы спокойно могли бы обойтись и без команды STOP.Тем самым мы достигли бы существенного упрощения, поскольку последовательность 11110 в качестве команды нам была бы уже не нужна, и ее можно было бы использовать как разделитель, что позволило бы избавиться от последовательности 111110. Это значительно сократило бы длину предписания K, и кроме того, вместо пятеричной системы счисления мы бы обошлись четверичной.

 

 

3.1. Гёдель и Тьюринг

 

В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой), суть которого заключается в том, что математическое понимание не может являться результатом при­менения какого-либо осмысленно осознаваемого и полностью достоверного алгоритма (или, что то же самое, алгоритмов; см. возражение Q1). В приводимых рассуждениях, однако, ни словом не упомянуто еще об одной возможности, существенно более се­рьезной и ничуть не противоречащей утверждению, а имен­но: убежденность математика в истинности своих выводов может оказаться результатом применения им некоего неизвестного и неосознаваемого алгоритма, или же, возможно, математик при­меняет какой-то вполне постижимый алгоритм, однако при этом не может знать наверняка (или хотя бы искренне верить), что вы­воды его являются целиком и полностью результатом применения этого самого алгоритма. Ниже я покажу, что, хотя подобные до­пущения и вполне приемлемы с логической точки зрения, вряд ли их можно счесть хоть сколько-нибудь правдоподобными.

 

Прежде всего следует указать на то, что тщательно вы­страивая последовательности умозаключений (вполне, заметим, осознанных) с целью установления той или иной математиче­ской истины, математики вовсе не считают, что они лишь слепо следуют неким неосознаваемым правилам, будучи при этом не в состоянии постичь эти правила ни рассудком, ни верой. На­против, они твердо знают, что их аргументация опирается ис­ключительно на непреложные истины — в основе своей, суще­ственно «очевидные»; столь же непреложными, на их взгляд, являются и все промежуточные умозаключения, составляющие упомянутую последовательность. Какой бы длинной, запутанной или даже концептуально неочевидной ни была цепь умозаклю­чений, само рассуждение в основе своей остается принципиаль­но неопровержимым и логически безупречным, а автор его ис­кренне верит в свою правоту. Ни один математик не согласит­ся с предположением о том, что на самом-то деле все его дей­ствия определяются какими-то совершенно иными процедурами, о которых он ничего не знает и в которые не верит, но кото­рые, возможно, неким непостижимым образом исподволь влияют на его убеждения.

 

Разумеется, в этом отношении математики могут и ошибать­ся. Может быть, и впрямь существует какая-то алгоритмическая процедура, которая руководит всем математическим мышлением, оставаясь при этом неизвестной самим математикам. Всерьез принять такую возможность, пожалуй, легче людям, далеким от математики, нежели большинству из тех, для кого математика является профессией. Полагая, что деятельность математика не сводится к простому выполнению некоего неизвестного (и непо­стижимого) алгоритма (равно как и алгоритма, в существовании которого он испытывает сомнения), это самое большинство ока­зывается как нельзя более правым, в чем я и постараюсь убедить читателя в этой главе. Разумеется, полностью исключить воз­можность того, что суждения и убеждения математиков и в самом деле определяются какими-то неизвестными и неосознаваемыми факторами, нельзя; однако, даже если так оно и есть, я полагаю, что такие факторы не имеют ничего общего с алгоритмически описываемыми процедурами.

 

Весьма поучительным представляется рассмотреть точки зрения двух выдающихся мыслителей от математики, которым мы, собственно говоря, и обязаны идеями, приведшими нас к утверждению . Что, в самом деле, думал по этому поводу Гёдель? А Тьюринг? Примечательно, что, исходя из одинако­вых математических данных, они пришли к противоположным, в сущности, выводам. Следует, впрочем, пояснить, что оба вы­вода находятся в полном согласии с утверждением. Гёдель, по всей видимости, полагал, что разум, вообще говоря, не ограни­чен не только необходимостью выступать исключительно в ка­честве вычислительной сущности, но и конечными физическими параметрами самого мозга. Он даже упрекал Тьюринга за то, что тот не допускал такой возможности. По словам Хао Вана ([374], с. 326, см. также Собрание сочинений Гёделя, т. 2 [158], с. 297), соглашаясь с обоими, вытекающими из позиции Тьюрин­га положениями, т. е. с тем, что «мозг, в сущности, функциони­рует подобно цифровому компьютеру», и с тем, что «физические законы, равно как и наблюдаемые следствия из них, обладают конечным пределом точности», Гёдель напрочь отвергал утвер­ждение Тьюринга о неотделимости разума от материи, считая это «свойственным эпохе предрассудком». Таким образом, согласно Гёделю, сам по себе физический мозг действует исключительно как вычислитель, разум же по отношению к мозгу представляет собой нечто высшее, вследствие чего активность разума оказы­вается свободной от ограничений, налагаемых вычислительны­ми законами, управляющими поведением мозга как физического объекта. Гёдель, судя по его собственным словам), не считал, что утверждениеможно рассматривать в качестве доказа­тельства его тезиса о невычислимости деятельности разума:

 

«С другой стороны, учитывая доказанное ранее, следует допустить принципиальную возможность существова­ния (и даже эмпирической реализации) некоей машины для доказательства теорем, каковая машина в сущности представляет собой эквивалент математической интуи­ции, однако доказать эту эквивалентность невозмож­но, как невозможно доказать и то, что на выходе такой машины мы будем получать только корректные теоре­мы конечной теории чисел».

 

Надо сказать, что вышеприведенное допущение ни в коей ме­ре не противоречит(и я ничуть не сомневаюсь, что Гёделю был хорошо известен тот недвусмысленный вывод, какой в моей формулировке получил обозначение). Гёдель допускал логи­ческую возможность того, что разум математика может функ­ционировать в соответствии с некоторым алгоритмом, о котором сам математик не знает, либо знает, но в таком случае не может быть однозначно уверен в его обоснованности (... доказать ... невозможно, ... только корректные теоремы ...). В соответствии с моей собственной терминологией такой алгоритм следует отнести к категории «непознаваемо обоснованных». Разумеется, совсем иное дело действительно поверить в возможность того, что деятельность разума математика и в самом деле определяется таким вот непознаваемо обоснованным алгоритмом. Похоже, сам Гёдель в это так и не поверил — и оказался в результате окружен компанией мистиков (точка зрения ), которые полагают, что средствами науки о феноменах физического мира разум объяс­нить невозможно.

 

Что же касается Тьюринга, то он, по-видимому, мистиче­скую точку зрения не принял, будучи в то же время солидарен с Гёделем в том, что мозг, как и всякий другой физический объ­ект, должен функционировать каким-либо вычислимым образом (вспомним о «тезисе Тьюринга», § 1.6). Таким образом, Тьюрингу пришлось искать какой-то другой способ обойти затруднение в лице утверждения. При этом особенно значимым ему показал­ся тот факт, что математикам-людям свойственно делать ошибки; если мы хотим, чтобы наш компьютер стал подлинно разумным, следует позволить ему хоть иногда ошибаться:

 

«Иными словами, это означает, что если мы требуем от машины непогрешимости, то не стоит ожидать от нее еще и разумности. Существует несколько теорем, суть которых почти буквально сводится к вышеприве­денному утверждению. Однако в этих теоремах ничего не говорится о степени разумности, которую нам мо­жет продемонстрировать машина, не претендующая на непогрешимость».

 

Под «теоремами» Тьюринг, вне всякого сомнения, подразумева­ет теорему Гёделя и другие аналогичные теоремы — такие, на­пример, как его собственная, «вычислительная» версия теоремы Гёделя. То есть, по Тьюрингу, получается, что наиболее суще­ственной способностью человеческого математического мышле­ния является способность ошибаться, благодаря которой свой­ственное (предположительно) разуму неточно-алгоритмическое функционирование обеспечивает большую мощность, нежели возможно получить посредством каких угодно полностью об­основанных алгоритмических процедур. Исходя из этого до­пущения, Тьюринг предложил способ обойти ограничение, на­лагаемое следствиями из теоремы Гёделя: мыслительная деятельность математика подчиняется-таки некоему алгорит­му, только не «непознаваемо обоснованному», а формаль­но необоснованному. Таким образом, точка зрения Тьюрин­га приходит в полное согласие с утверждением , а сам Тьюринг, по-видимому, присоединяется к сторонникам точ­ки зрения,.

 

Завершая дискуссию, я хотел бы представить мои собствен­ные причины усомниться в том, что «необоснованность» управ­ляющего разумом математика алгоритма может послужить под­линным объяснением тому, что в этом самом разуме проис­ходит. Как бы ни обстояло дело в действительности, в самой идее о том, что превосходство человеческого разума над точной машиной достигается за счет неточности разума, мне видит­ся какое-то глубинное противоречие, особенно когда речь — как в нашем случае — идет о способности математика от­крывать неопровержимые математические истины, а не о его оригинальности или творческих способностях. Порази­тельно, что два великих мыслителя, какими, несомненно, явля­ются Гёдель и Тьюринг, руководствуясь соображениями вроде утверждения, пришли к выводам (пусть и различным), кото­рые многие из нас склонны считать, скажем так, маловероятны­ми. Кроме того, весьма интересно поразмыслить о том, к каким бы выводам они пришли, имей они шанс хоть сколько-нибудь всерьез предположить, что физический процесс может иногда оказаться в основе своей невычислимым — в соответствии с точкой зрения, ради продвижения которой и была написана эта книга.

 

В последующих разделах (особенно, в §§3.2—3.22) я пред­ставлю вашему вниманию несколько детальных обоснований (некоторые из них довольно сложны, запутаны или специальны), целью которых является демонстрация неспособности вычисли­тельных моделейвыступить в качестве вероятной основы для исследования феномена математического понимания. Если читатель не нуждается в подобном убеждении либо не склонен погружаться в детали, то я бы порекомендовал ему (или ей) все же начать чтение, а затем, когда уж совсем надоест, переходить сразу к итоговому воображаемому диалогу (§3.23). Если у вас затем снова появится желание вернуться к пропущенным рассу­ждениям, буду только рад, если же нет — забудьте о них и читайте дальше.

 

3.2. Способен ли необоснованный алгоритм познаваемым образом моделировать математическое понимание?

 

Согласно выводудля того чтобы математическое пони­мание могло оказаться результатом выполнения некоего алго­ритма, этот алгоритм должен быть необоснованным или непо­знаваемым, если же он сам по себе обоснован и познаваем, то о его обоснованности должно быть принципиально невозможно узнать наверняка (такой алгоритм мы называем непознаваемо обоснованным); кроме того, возможно, что различные математи­ки «работают» на различных типах таких алгоритмов. Под «алго­ритмом» здесь понимается просто какая-нибудь вычислительная процедурат. е. любой набор операций, который можно, в принципе, смоделировать на универсальном компьютере с неограниченным объемом памяти. (Как нам известно из обсу­ждения возражения«неограниченность» объема памя­ти в данном идеализированном случае на результаты рассужде­ния никак не влияет.) Такое понятие алгоритма включает в себя нисходящие процедуры, восходящие самообучающиеся системы, а также различные их сочетания. Сюда, например, входят любые процедуры, которые можно реализовать с помощью искусствен­ных нейронных сетейЭтому определению отвечают и иные типы восходящих механизмов — например, так называемые «генетические алгоритмы», повышающие свою эффективность с помощью некоей встроенной процедуры, аналогичной дарвинов­ской эволюции

 

О специфике приложения аргументации, представляемой в настоящем разделе (равно как и доводов, выдвинутых в гла­ве 2), к восходящим процедурам я еще буду говорить в 3.22 (краткое изложение их можно найти в воображаемом диа­логе,). Пока же, для большей ясности изложения, будем рассуждать, исходя из допущения, что в процессе участвует один-единственный тип алгоритмических процедур, а именно — нис­ходящие. Такую алгоритмическую процедуру можно относить как к отдельному математику, так и к математическому сообществу в целом. В комментариях к возражениями рассматривалось предположение о том, что разным людям могут быть свойственны различные обоснованные и известные алго­ритмы, причем мы пришли к заключению, что такая возможность не влияет на результаты рассуждения сколько-нибудь значитель­ным образом. Возможно также, что разные люди постигают ис­тину посредством различных необоснованных и непознавае­мых алгоритмов; к этому вопросу мы вернемся несколько поз­же (см. §3.7). А пока, повторюсь, будем считать, что в основе математического понимания лежит одна-единственная алгорит­мическая процедура. Можно, кроме того, ограничить рассматри­ваемую область той частью математического понимания, которая отвечает за доказательство-высказываний (т. е. определений тех операций машины Тьюринга, которые не завершаются; см. комментарий к возражению Q10). В дальнейшем вполне доста­точно интерпретировать сочетание «математическое понимание» как раз в таком, ограниченном смысле (см. формулировку с. 164).

 

В зависимости от познаваемости предположительно лежа­щей в основе математического понимания алгоритмической про­цедуры F (будь то обоснованной или нет), следует четко выделять три совершенно различных случая. Процедураможет быть:

 

I сознательно познаваемой, причем познаваем также и тот факт, что именно эта алгоритмическая процедура ответ­ственна за математическое понимание;

 

II сознательно познаваемой, однако тот факт, что математиче­ское понимание основывается именно на этой алгоритмиче­ской процедуре, остается как неосознаваемым, так и непо­знаваемым;

 

III неосознаваемой и непознаваемой.

 

Рассмотрим сначала полностью сознательный случай I. По­скольку и сам алгоритм, и его роль являются познаваемыми, мы вполне можем счесть, что мы о них уже знаем. В самом деле, ничто не мешает нам вообразить, что все наши рассуждения име­ют место уже после того, как мы получили в наше распоряжение соответствующее знание — ведь слово «познаваемый» как раз и подразумевает, что такое время, по крайней мере, в принципе, когда-нибудь да наступит. Итак, алгоритмнам известен, при этом известна и его основополагающая роль в математическом понимании. Как мы уже видели (§ 2.9), такой алгоритм эффектив­но эквивалентен формальной системеИными словами, полу­чается, что математическое понимание — или хотя бы понимание математики каким-то отдельным математиком — эквивалентно выводимости в рамках некоторой формальной системы F. Если мы хотим сохранить хоть какую-то надежду удовлетворить вы­воду XX, к которому нас столь неожиданно привели изложенные в предыдущей главе соображения, то придется предположить, что система F является необоснованной. Однако, как это ни странно, необоснованность в данном случае ситуацию ничуть не меняет, поскольку, в соответствии с I, известная формальная си­стема F является действительно известной, то есть любой ма­тематик знает и, как следствие, верит, что именно эта система лежит в основе его (или ее) математического понимания. А такая вера автоматически влечет за собой веру (пусть и ошибочную) в обоснованность системы F. (Согласитесь, крайне неразумно выглядит точка зрения, в соответствии с которой математик поз­воляет себе не верить в самые фундаментальные положения соб­ственной заведомо неопровержимой системы взглядов.) Незави­симо от того, является ли система F действительно обоснован­ной, вера в ее обоснованность уже содержит в себе веру в то, что утверждение G(F) (или, как вариант, omega(F), см. §2.8) ис­тинно. Однако, поскольку теперь мы полагаем (исходя из веры в справедливость теоремы Гёделя), что истинность утвержде­ния G(F) в рамках системы F недоказуема, это противоречит предположению о том, что система F является основой всякого (существенного для рассматриваемого случая) математического понимания. (Это соображение одинаково справедливо как для отдельных математиков, так и для всего математического сооб­щества в целом; его можно применять индивидуально к любому из всевозможных алгоритмов, предположительно составляющих основу мыслительных процессов того или иного математика. Бо­лее того, согласно предварительной договоренности, для нас на данный момент важна применимость этого соображения лишь в той области математического понимания, которая имеет отно­шение к доказательству II1-высказываний.) Итак, невозможно знать наверняка, что некий гипотетический известный необосно­ванный алгоритм F, предположительно лежащий в основе мате­матического понимания, и в самом деле выполняет эту роль. Сле­довательно, случай I исключается, независимо от того, является система F обоснованной или нет. Если система F сама по себе познаваема, то следует рассмотреть возможность II, суть которой заключается в том, что система F все же может составлять основу математического понимания, однако узнать об этой ее роли мы не в состоянии. Остается в силе и возможность III: сама система является как неосознаваемой, так и непознаваемой.

 

На данный момент мы достигли следующего результата: слу­чай I (по крайней мере, в контексте полностью нисходящих ал­горитмов) как сколько-нибудь серьезную возможность рассмат­ривать нельзя; тот факт, что системаможет в действитель­ности оказаться и необоснованной, как выяснилось, сути про­блемы ничуть не меняет. Решающим фактором здесь является невозможность точно установить, является та или иная гипоте­тическая система(независимо от ее обоснованности) основой для формирования математических убеждений или же нет. Дело не в непознаваемости самого алгоритма, но в непознаваемости того факта, что процесс понимания действительно происходит в соответствии с данным алгоритмом.

 

3.3. Способен ли познаваемый алгоритм непознаваемым образом моделировать математическое понимание?

 

Перейдем к случаю II и попытаемся серьезно рассмотреть возможность того, что математическое понимание на деле экви­валентно некоторому сознательно познаваемому алгоритму либо формальной системе, однако эквивалентность эта принципиаль­но непознаваема. Иными словами, даже при условии познавае­мости той или иной гипотетической формальной системымы никоим образом не можем убедиться в том, что именно эта кон­кретная система действительно лежит в основе нашего матема­тического понимания. Правдоподобно ли такое предположение?

 

Если упомянутая гипотетическая формальная системане является уже известной, то в этом случае нам, как и ранее, следует полагать, что она может, по крайней мере, в принципе, когда-нибудь таковой стать. Вообразим, что этот светлый день наконец наступил, и допустим, что в нашем распоряжении име­ется точное и подробное описание этой самой системы. Предпо­лагается, что формальная система, будучи, возможно, крайне замысловатой, все же достаточно проста для того, чтобы мы ока­зались способны, по крайней мере, в принципе, постичь ее на вполне сознательном уровне. При этом нам не позволено испы­тывать уверенность в том, что системадействительно целиком и полностью охватывает всю совокупность наших твердых математических убеждений и интуитивных озарений (по край­ней мере в том, что касается-высказываний). Это, вообще-то вполне логичное предположение оказывается на деле в высшей степени неправдоподобным, в причинах чего мы и попытаемся разобраться. Более того, несколько позднее я покажу, что даже будь оно истинным, это не принесло бы никакой радости тем ИИ-энтузиастам, которые видят смысл жизни в создании робота-математика. Мы еще поговорим об этом в конце данного раздела и — более подробно — в §§ 3.15 и 3.29.

 

Дабы подчеркнуть тот факт, что существование подобной си­стемы F и в самом деле следует полагать логически возможным, вспомним о «машине для доказательства теорем», возможности создания которой, согласно Гёделю, логически исключить нельзя (см. цитату в §3.1). В сущности, такую «машину», как я поясню ниже, как раз и можно представить в виде некоторой алгоритми­ческой процедуры F, соответствующей вышеприведенным пунк­там II или III. Как отмечает Гёдель, его гипотетическая машина для доказательства теорем может быть «эмпирически реализо­вана», что соответствует требованию «сознательной познаваемо­сти» процедуры F в случае II; если же подобная реализация ока­зывается невозможной, то мы, по сути, имеем дело со случаем III.

 

На основании своей знаменитой теоремы Гёдель утверждал, что невозможно доказать «эквивалентность» процедуры F(или, что то же самое, формальной системысм. §2.9) «математи­ческой интуиции» (см. ту же цитату). В определении случая II (и, как следствие, III) я сформулировал это фундаментальное ограничение, налагаемое на, несколько по-иному: «Тот факт, что математическое понимание основывается именно на этой ал­горитмической процедуре, остается как неосознаваемым, так и непознаваемым».

 

Это ограничение (необходимость в котором следует из об­основанного в §3.2 исключения случая I) со всей очевидностью приводит к невозможности показать, что процедураэквива­лентна математической интуиции, поскольку посредством подоб­ной демонстрации мы могли бы однозначно убедиться в том, что процедура действительно выполняет ту роль, о самом факте выполнения которой мы предположительно не в состоянии ни­чего знать. И наоборот, если бы эта самая роль процедуры (роль фундаментального алгоритма, в соответствии с которым осуществляется постижение математических истин) допускала осознанное познание (в том смысле, что мы могли бы в полной мере постичь, как именно процедуравыполняет эту свою роль), то нам пришлось бы признать и обоснованность. Ибо если мы не допускаем, что процедурацеликом и полностью обосно­вана, то это означает, что мы отвергаем какие-то ее следствия. А ее следствиями являются как раз те математические положения (или хотя бы только-высказывания), которые мы полагаем-таки истинными. Таким образом знание роли процедурырав­нозначно наличию доказательствахотя такое «доказатель­ство» и нельзя считать формальным доказательством в рамках некоторой заранее заданной формальной системы.

 

Отметим также, что истинные-высказывания можно рас­сматривать в качестве примеров тех самых «корректных теорем конечной теории чисел», о которых говорил Гёдель. Более то­го, если понятие «конечной теории чисел» включает в себя-операцию «отыскания наименьшего натурального числа, обла­дающего таким-то свойством», в каковом случае оно включает в себя и процедуры, выполняемые машинами Тьюринга (см. ко­нец § 2.8), то тогда частью конечной теории чисел следует считать все-высказывания. Иными словами, получается, что доказа­тельство гёделевского типа не дает четкого способа исключить из рассмотрения случай II, руководствуясь одними лишь строго логическими основаниями — по крайней мере, до тех пор, пока мы полагаем, что Гёдель был прав.

 

С другой стороны, можно задаться вопросом об общем правдоподобии предположения II. Рассмотрим, что повлечет за собой существование познаваемой процедурынепознаваемым образом эквивалентной человеческому математическому пони­манию (заведомо непогрешимому). Как уже отмечалось, ничто не мешает нам мысленно перенестись в некое будущее время, в ко­тором эта процедура окажется обнаружена и подробно описана. Известно также (см. §2.7), что формальная система задается в виде некоторого набора аксиом и правил действия. Теоремы системыпредставляют собой утверждения (иначе называемые «положениями»), выводимые из аксиом с помощью правил дей­ствия, причем все теоремы можно сформулировать посредством того же набора символов, который используется для выражения аксиом. А теперь представим себе, что теоремы системыв точ­ности совпадают с теми положениями (сформулированными с помощью упомянутых символов), неопровержимую истинность ко­торых математики, в принципе, способны самостоятельно уста­новить.

 

Допустим на минуту, что перечень аксиом системыявля­ется конечным. Сами же аксиомы суть не что иное, как част­ные случаи соответствующих теорем. Однако неопровержимую истинность каждой теоремы мы можем, в принципе, постичь по­средством математического понимания и интуиции. Следователь­но, каждая аксиома в отдельности должна выражать нечто та­кое, что по крайней мере, в принципе, постижимо посредством этого самого математического понимания. Иными словами, для каждой отдельной аксиомы когда-нибудь непременно настанет (либо принципиально возможно, что настанет) время, когда ее неопровержимая истинность будет однозначно установлена. Так, рассматривая одну за другой, мы сможем устанавливать истин­ность любой отдельно взятой аксиомы системыТаким образом, в конечном итоге будет установлена (либо принципиально воз­можно, что будет установлена) неопровержимая истинность всех отдельно взятых аксиом. Соответственно, настанет время, когда будет установлена неопровержимая истинность всей совокупно­сти аксиом системыв целом.

 

А как быть с правилами действия? Можем ли мы предпо­ложить, что настанет время, когда будет однозначно установлена неопровержимая обоснованность этих правил? Во многих фор­мальных системах правилами действия служат достаточно про­стые утверждения, каждое из которых с очевидностью «неопро­вержимо», например: «Если установлено, что высказывание является теоремой и высказываниеявляется теоремой, то можно заключить, что высказываниетакже является те­оремой» (относительно символа«следует» см. НРК, с. 393, или [222]). Признать неоспоримую справедливость таких пра­вил совсем не трудно. С другой стороны, среди правил действия встречаются и гораздо более тонкие отношения, справедливость которых вовсе не так очевидна; прежде чем прийти к однознач­ному решению относительно того, считать то или иное такое пра­вило «неопровержимо обоснованным» или нет, нам, возможно, потребуется прибегнуть к весьма подробному и тщательному ана­лизу. Более того, как мы вскоре убедимся, в наборе правил дей­ствия формальной системынеизбежно имеются такие правила, неоспоримая обоснованность которых не может быть достоверно установлена ни одним математиком — причем мы все еще пола­гаем, что число аксиом в системеконечно.

 

В чем же причина? Перенесемся в воображении в то са­мое время, когда уже однозначно установлена неопровержимая справедливость всех аксиом формальной системыПеред нами открывается замечательная возможность без помех рассмотреть всю системуцеликом. Попробуем допустить, что все правила действия системыможно также считать справедливыми безо всяких оговорок. Хотя предполагается, что мы еще не можем знать наверняка, что системадействительно включает в себя всю математику, которая в принципе доступна человеческому по­ниманию и интуиции, мы должны к настоящему моменту, по мень­шей мере, уже убедиться в том, что системаявляется неоспори­мо обоснованной, поскольку справедливость как ее аксиом, так и ее правил действия безоговорочно нами принимается. Следова­тельно, мы также должны уже быть уверены в том, что система непротиворечива. Не забываем, разумеется, и о том, что, в силу этой непротиворечивости, утверждениетакже должно быть истинным — более того, неопровержимо истинным! Однако, поскольку предполагается, что системафактически (хотя нам об этом неизвестно) включает в себя всю совокупность того, что безоговорочно доступно нашему пониманию, утверждение должно на деле представлять собой теорему системыСогласно теореме Гёделя, такое, вообще говоря, возможно только в том случае, если формальная системапротиворечива. Если же система F противоречива, то одной из теорем этой системы явля­ется утверждениеСледовательно, утверждение должно быть, в принципе, доступно нашему математическому по­ниманию — очевидное противоречие!

 

Несмотря на это, следует, по крайней мере, учесть саму воз­можность того, что математики действуют (не зная о том) в рам­ках системыкоторая является, по существу, необоснованной. К этому вопросу я еще вернусь в §3.4, пока же (в пределах данно­го раздела) будем полагать, что на самом деле процедуры, лежа­щие в основе математического понимания, целиком и полностью обоснованны. При данных обстоятельствах, если мы продолжаем настаивать на том, что все правила действия нашей формальной системыс конечным набором аксиом безоговорочно истинны, нам остается лишь признать, что противоречие действительно имеет место. Следовательно, среди правил действия системыдолжно быть по крайней мере одно правило, обоснованность ко­торого не может неопровержимо установить ни один математик (хотя в действительности это правило является обоснованным).

 

Все вышеприведенные рассуждения опирались на то до­пущение, что система задается конечным набором аксиом. В качестве возможного альтернативного решения можно пред­положить, что количество аксиом в системебесконечно. От­носительно этой возможности необходимо сделать некоторые комментарии. Для того чтобы системуможно было опреде­лить как формальную в требуемом смысле — т. е. как систему, в рамках которой всегда можно однозначно установить (посред­ством некоторой заранее заданной вычислительной процедуры), что предполагаемое доказательство того или иного положения действительно является доказательством в соответствии с пра­вилами системы, — необходимо, чтобы ее бесконечный набор аксиом можно было выразить каким-то конечно определяемым образом. Вообще говоря, всегда допускается некоторая свобода в отношении выбора конкретного способа представления фор­мальной системы, в соответствии с которым операции системы определяются либо как аксиомы, либо как правила действия. Так, стандартная аксиоматическая система теории множеств — си­стема Цермело—Френкеля (обозначаемая здесь как) — вклю­чает в себя бесконечное количество аксиом, выражаемых по­средством структур, называемых «схемами аксиом». Путем соот­ветствующего переформулирования системуможно выразить таким образом, что количество действительных аксиом станет конечным). Более того, действуя определенным образом, такое можно проделать с любой схемой аксиом, являющейся «фор­мальной» в требуемом нами вычислительном смысле.

 

Может создаться впечатление, что вышеприведенное рас­суждение (целью которого является исключение из списка воз­можных вариантов случаяприменимо к любой (обоснованной) системевне зависимости от того, конечно или бесконечно ко­личество ее аксиом. Это и в самом деле так, однако в процессе приведения бесконечной схемы аксиом к конечному виду мы мо­жем ввести новые правила действия, которые могут оказаться не столь самоочевидно обоснованными. Так, представляя себе, в со­ответствии с вышеизложенными соображениями, времена, когда нам станут известны все аксиомы и правила действия системы (при этом также предполагается, что все теоремы этой гипоте­тической системы в точности совпадают с теоремами, которые в принципе доступны человеческим пониманию и интуиции), мы никоим образом не можем быть уверены в принципиальной воз­можности неопровержимого установления обоснованности пра­вил действия такой системыв отличие от ее аксиом (даже если эти правила действительно являются обоснованными). Дело в том, что, в отличие от аксиом, правила действия не принадлежат к теоремам формальной системы. Мы же полагаем, что неопро­вержимо установить можно лишь обоснованность теорем си­стемы

 

Не совсем ясно, возможно ли продолжить данное рассужде­ние, оставаясь при этом в рамках строгой логики. Если мы пола­гаем справедливой возможностьто нам приходится признать, что существует некая формальная система(на основании ко­торой человек постигает истинность-высказываний), целиком и полностью понимаемая математиками, обладающая конечным набором аксиом, справедливость которых не вызывает никаких сомнений, и конечной системой правил действиякоторая, впрочем, содержит по крайней мере одну операцию, полагаемую фундаментально сомнительной. Каждая отдельно взятая теоре­ма системынеизбежно оказывается утверждением, истинность которого может быть неопровержимо установлена, — что, соб­ственно говоря, удивительно, учитывая тот факт, что многие из этих теорем выводятся с помощью сомнительных правил систе­мыКроме того, хотя математик и может (в принципе) уста­новить истинность каждой из упомянутых теорем в отдельно­сти, единообразной процедуры для этого не существует. Мож­но ограничить область рассмотрения теми теоремами системы которые представляют собой-высказывания. Применяя со­мнительную систему правилмы можем вычислительным спо­собом сгенерировать перечень тех-высказываний, справедли­вость которых может быть однозначно установлена математика­ми. В конечном счете, человек, воспользовавшись пониманием и интуицией, оказывается способен установить справедливость каждого из этих-высказываний в отдельности. Однако в каж­дом конкретном случае для такого установления применяются методы рассуждений, существенно отличающиеся от правила с помощью которого было получено данное-высказывание. Раз за разом нам приходится добавлять в систему все новые, все более изощренные плоды человеческого разума — с тем, чтобы можно было неопровержимо доказать истинность каж­дого последующего-высказывания. Словно по волшебству, истинными оказываются все-высказывания, впрочем истин­ность некоторых из них можно установить лишь после привле­чения какого-либо фундаментально нового метода рассуждения, причем необходимость в этом возникает вновь и вновь, на все более глубоких уровнях. Более того, любое-высказывание, неоспоримую истинность которого можно установить — причем неважно, каким методом, — оказывается уже включенным в тот самый перечень, который мы сгенерировали ранее с помощью системы правилНаконец, существует еще и особое истин­ное-высказываниекоторое явным образом выводится из знания формальной системыоднако истинность которого не может быть неопровержимо установлена ни одним матема­тиком. В лучшем случае, математик сможет понять, что истин­ностьнепосредственно обусловлена обоснованностью со­мнительной системы правил действиякоторая, по всей види­мости, обладает некоей чудесной способностью определять, ис­тинность каких именно II1-высказываний может быть неопро­вержимо установлена человеком.

 

Могу себе представить, что кому-то все это, возможно, по­кажется не совсем бессмысленным. Ко многим своим выводам математики приходят на основании предпосылок, которые можно назвать «эвристическими принципами» — такой принцип не дает непосредственного доказательства предполагаемого вывода, однако дает основания ожидать, что истинным неизбежно ока­жется именно такой вывод. Собственно доказательство может быть получено и позднее, причем совершенно иными методами. Мне, однако, представляется, что подобные эвристические прин­ципы имеют на деле очень мало общего с нашей гипотетической системой правилВ сущности, такие принципы способны лишь углубить наше сознательное понимание причин, в соответствии с которыми оказывается истинным тот или иной математический вывод. Впоследствии, в результате более серьезной разработки соответствующих математических методов, часто становится вполне ясно, почему именно сработал тот или иной эвристиче­ский принцип. В большинстве же случаев вполне проясняется лишь один вопрос: при каких именно обстоятельствах данный эвристический принцип гарантированно работает, а при каких — нет; иначе говоря, если не соблюдать известной осторожности, можно прийти к весьма и весьма ошибочным выводам. Если же осторожность соблюдена, сам такой принцип становится чрезвы­чайно мощным и надежным инструментом математического до­казательства. Он не снабдит вас сверхъестественно достовер­ной алгоритмической процедурой для установления справедли­вости-высказываний, причины успешного функционирования которой будут принципиально недоступны человеческому пони­манию, вместо этого он предоставит средства для углубления ва­шего математического понимания и усиления вашей же интуиции. А в этом, согласитесь, есть нечто, в корне отличное от алгорит­ма (или формальной системы), описанного в соответствии с возможностью Более того, никто никогда и не предлагал эвристического принципа, позволившего бы сгенерировать в точ­ности все-высказывания, истинность которых может быть од­нозначно установлена математиками.

 

Разумеется, из всего этого вовсе не следует, что упомянутый алгоритм(гипотетическая машина Гёделя для доказательства теорем) является логически невозможным; однако, с позиции на­шего математического понимания, вероятность существования такой машины представляется исключительно малой. Во всяком случае, в настоящее время ни у кого пока нет ни малейшего пред­положения относительно возможной природы подобного алго­ритма, равно как нет и никаких намеков на его действительное существование. Он может существовать, в лучшем случае, в ка­честве гипотезы — причем гипотезы недоказуемой. (Ее дока­зательство будет равносильно ее опровержению!) Мне думается, что со стороны любого из сторонников идеи ИИ (независимо от того, принадлежит он к лагерю ) является в высшей степени безрассудным возлагать какие бы то ни было надежды на отыскание такой алгоритмической процедуры (обобщенной здесь в виде алгоритма), само существование которой крайне сомнительно, а точное построение (существуй она в действитель­ности) едва ли по силам любому из ныне живущих математиков или логиков.

 

Можно ли допустить, что подобный алгоритмвсе же су­ществует и, более того, может быть получен с помощью до­статочно сложных вычислительных процедур восходящего типа? В, в рамках обсуждения случаяя приведу серьезные логические доводы, убедительно демонстрирующие, что ни одна из познаваемых восходящих процедур не в состоянии привести нас к алгоритмудаже если бы он и в самом де­ле существовал. Таким образом, можно заключить, что в каче­стве сколько-нибудь серьезной логической возможности нельзя рассматривать даже «гёделеву машину для доказательства тео­рем» — если, конечно, не допустить, что в основе всего матема­тического понимания в целом лежат некие «непознаваемые меха­низмы», природа которых, увы, не оставляет поборникам ИИ ни единого шанса.

 

Прежде чем мы перейдем к обещанному более подробному обсуждению случая, необходимо разобраться до конца со слу­чаем— здесь остается еще одна альтернатива, суть которой заключается в том, что фундаментальная алгоритмическая про­цедура(или формальная система) может оказаться необос­нованной (случай, как мы помним, такой лазейки не допускал). Может ли быть так, что математическое понимание человека представляет собой эквивалент некоего познаваемого алгоритма, который в основе своей ошибочен? Рассмотрим эту возможность подробнее.

 

3.4. Не действуют ли математики, сами того не осознавая, в соответствии с необоснованным алгоритмом?

 

Допустим, что в основе математического понимания и в са­мом деле лежит некая необоснованная формальная система F. Как же мы тогда можем быть уверены в том, что наши математи­ческие представления в отношении того, что считать неоспоримо истинным, не введут нас в один прекрасный день в какое-нибудь фундаментальное заблуждение? А может, это уже случилось? Ситуация несколько отличается от той, что рассматривалась в связи со случаем, где мы исключили возможность нашего зна­ния о том, что некая системаи в самом деле является необос­нованной. Здесь же мы допускаем, что подобная роль системы принципиально непознаваема, вследствие чего нам придется по­вторно рассмотреть вариант с возможной необоснованностью Можно ли считать действительно правдоподобным предположе­ние о том, что фундаментом для наших неопровержимых мате­матических убеждений служит некая необоснованная система -настолько необоснованная, что одним из этих убеждений может, в принципе, оказаться уверенность в истинности равенства Несомненно одно: если мы не можем доверять собственным ма­тематическим суждениям, то мы равным образом не можем доверять и всем остальным своим суждениям об устройстве и функционировании окружающего нас мира, поскольку матема­тические суждения составляют весьма существенную часть всего нашего научного понимания.

 

Кто-то, тем не менее, возразит, что нет ничего невероятно­го в том, что какие-то современные общепринятые математиче­ские суждения (или суждения, которые мы будем считать неоспо­римыми в будущем) содержат скрытые «врожденные» противо­речия. Возможно, они даже сошлются на тот знаменитый пара­докс (о «множестве множеств, которые не являются элементами самих себя»), о котором Бертран Рассел писал Готтлобу Фреге в 1902 году, как раз тогда, когда Фреге собирался опублико­вать труд всей своей жизни, посвященный основам математики (см. также комментарий к возражениюи НРК, с. 100). В приложении к книге Фреге писал (см. [126]):

 

Вряд ли с ученым может приключиться что-либо более

 

нежеланное, чем потрясение основ его мировоззрения

 

сразу вслед за тем, как он закончил изложение их на бу­маге. Именно в такое положение поставило меня письмо от г-на Бертрана Рассела...

 

Разумеется, мы всегда можем сказать, что Фреге просто-напросто ошибся. Всем известно, что математики иногда допус­кают ошибки — порой даже весьма серьезные. Более того, как явствует из признания самого Фреге, его ошибка была вполне ис­правимой. Разве мы не убедились (вкомментарий к) в том, что подобные исправимые ошибки не имеют к нашим рас­суждениям никакого отношения? Мы рассматриваем здесь, как и влишь принципиальные вопросы, а не подверженность ошибкам отдельных представителей математического сообще­ства. Ошибки же, на которые можно указать, ошибочность кото­рых можно однозначно продемонстрировать, вовсе не принадле­жат к категории принципиальных вопросов, разве нет? Все так, однако ситуация, рассматриваемая нами в настоящий момент, несколько отличается от той, что обсуждалась в комментарии к возражениюпоскольку теперь у нас есть формальная си­стема, которая, возможно, лежит в основе нашего математи­ческого понимания, только мы об этом не знаем. Как и прежде, нас не занимают единичные ошибки — или «оговорки», — ко­торые может допустить отдельный математик, рассуждая в рам­ках какой-то в общем непротиворечивой системы. Однако теперь речь идет еще и о том, что сама система может содержать в себе некие глобальные противоречия. Именно это и произошло в случае с Фреге. Не узнай Фреге о парадоксе Рассела (или ином парадоксе сходной природы), вряд ли кто-либо смог бы убедить его в том, что в его систему вкралась фундаментальная ошибка. Дело не в том, что Рассел указал на какое-то формальное упу­щение в рассуждениях Фреге, а Фреге признал наличие ошибки, руководствуясь собственными канонами построения умозаклю­чений; нет, Фреге продемонстрировали, что в самих этих канонах содержится некое изначальное противоречие. И именно факт на­личия противоречия, а не что-либо иное, убедило Фреге в том, что его рассуждения ошибочны, а то, что прежде представлялось несокрушимой истиной, на деле фундаментально неверно. При этом о существовании ошибки стало известно только благодаря тому, что вскрылось противоречие. Если бы факт противоречиво­сти установлен не был, то математики могли бы еще долгое время считать предложенные Фреге методы построения умозаключений вполне достоверными и даже, возможно, строили бы на их фун­даменте собственные системы.

 

Впрочем, полагаю, в данном случае крайне маловероятно, что многим математикам удалось бы в течение сколько-нибудь длительного срока наслаждаться той свободой умопостроений (в отношении бесконечных множеств), какую предоставляла си­стема Фреге. Причина в том, что парадоксы типа парадокса Рассела довольно легко обнаружить. Можно представить себе какой-нибудь гораздо более тонкий парадокс, например, такой, что неявным образом содержится в тех или иных полагаемых на­ми на данный момент неопровержимо истинными математических процедурах — парадокс, о котором никто не узнает еще, быть может, многие века. Необходимость в смене привычных правил мы осознаем лишь тогда, когда такой парадокс наконец себя про­явит. Короче говоря, наша математическая интуиция не зиждется на каких-то непреходящих в веках установлениях, но непрерывно меняется под сильным воздействием идей, которые прекрасно «работали» прежде, и соображений, последствия применения которых пока что «сходят нам с рук». Такая точка зрения отнюдь не исключает возможности существования в основе нашего те­перешнего математического понимания некоего алгоритма (или формальной системы), однако этот алгоритм не является чем-то неизменным, по мере обнаружения новых данных он подвергает­ся непрерывной модификации. К изменяющимся алгоритмам мы еще вернемся несколько позднее где и убедимся в том, что это по-прежнему все те же алгоритмы, только в ином обличье.

 

Разумеется, с моей стороны было бы наивным отрицать тот факт, что в методах, которые применяют в своей работе матема­тики, нередко присутствует элемент «доверия» процедуре, если она «до сих пор, кажется, работает». В моей собственной мате­матической практике такие предварительные, ориентировочные, нечеткие соображения составляют в общей совокупности рас­суждений весьма заметный процент. Однако они, как правило, обретаются в той области, которая «отвечает» за нащупывание нового, еще не сформировавшегося понимания, а никак не в той, где мы «складываем» неопровержимо, на наш взгляд, установ­ленные истины. Я очень сомневаюсь, что сам Фреге так уж ка­тегорически полагал свою систему абсолютно неопровержимой, даже не подозревая еще о парадоксе, о котором написал ему Рассел. Система суждений столь общего характера, что бы ни думал по ее поводу автор, всегда выдвигается на всеобщее обо­зрение с некоторой настороженностью. Лишь после длительного «периода осмысления» можно будет полагать, что она достигла, наконец, «уровня неопровержимости». Имея же дело с системой настолько общей, как система Фреге, в любом случае, как мне кажется, следует употреблять выражения вида «полагая систему Фреге обоснованной, можно считать справедливым то-то и то-то», а не просто утверждать эти самые «то-то и то-то» без упо­мянутой оговорки. (См. также комментарии к возражениям и.

 

Возможно, в настоящее время математики стали более осто­рожными в отношении того, что они готовы рассматривать как «неопровержимую истину» — эпоха осторожности сменила эпо­ху отчаянной дерзости (среди примеров которой работа Фре­ге занимает далеко не последнее место), пришедшуюся на ко­нецстолетия. С выходом на сцену парадокса Рассела и про­чих ему подобных необходимость в такой осторожности прояв­ляется особенно наглядно. Что же касается дерзости, то она, по большей части, уходит корнями в те времена, когда математи­ки начали потихоньку осознавать всю мощь канторовой теории бесконечных чисел и бесконечных множеств, выдвинутой им в начале того жевека. (Следует, впрочем, отметить, что сам Кантор знал о парадоксах, подобных парадоксу Рассела, — за­долго до того, как сам Рассел обнаружил тот, что был назван его именем), — и предпринимал попытки усовершенствовать свою формулировку с тем, чтобы, по возможности, учитывать подобные проблемы.) Цели и характер моих рассуждений на этих страницах также, несомненно, требуют крайней осторожности. И я безмерно рад, что нам с вами приходится иметь дело только с утверждениями, истинность которых неопровержима, и что нет никакой необходимости влезать в дебри бесконечных множеств и прочих сомнительных понятий. Важно помнить, что где бы мы ни провели черту, полученные с помощью доказательства Гёделя утверждения всегда остаются в рамках неопровержимо истин­ного (см. также комментарий к возражению). Само по себе доказательство Гёделя (—Тьюринга) не имеет абсолютно никако­го отношения к вопросам, связанным с сомнительным существо­ванием бесконечных множеств определенного сорта. Неясности, касающиеся тех самых исключительно вольных рассуждений, столь занимавших Кантора, Фреге и Рассела, ничуть не занима­ют нас — до тех пор, пока они остаются «сомнительными», не претендуя на звание «неопровержимых». Коль скоро мы со всем этим согласны, я никак не могу счесть правдоподобным допуще­ние, согласно которому математики действительно использу­ют в качестве основы для своего математического понимания и убеждений какую-либо необоснованную формальную систему F. Я надеюсь, читатель согласится с тем, что вне зависимости от того, возможна такая ситуация или нет, она, во всяком случае, невероятна.

 

Наконец, в связи с возможной необоснованностью нашей гипотетической системы, вернемся ненадолго к другим аспек­там человеческой «неточности», о которых мы говорили выше (см. комментарии к возражениям). Прежде всего повторюсь, нас в данном случае интересуют не вдохновение, не гениальные догадки и не эвристические критерии, способные привести математика к великим открытиям, но лишь понимание и проникновение в суть, на фундаменте которых покоятся его неопровержимые убеждения в отношении математических истин. Эти убеждения могут оказаться всего-навсего результатом озна­комления с рассуждениями других математиков, и в этом слу­чае о каких бы то ни было элементах математического открытия говорить, разумеется, не приходится. А вот когда мы нащупы­ваем путь к какому-то подлинному открытию, и впрямь весьма важно дать размышлениям свободу, не ограничивая их изначаль­но необходимостью в полной достоверности и точности (у меня сложилось впечатление, что именно это имел в виду Тьюринг в приведенной выше цитате, см.). Однако когда перед нами встает вопрос о принятии или отклонении тех или иных доводов в поддержку неопровержимой истинности выдвигаемого математи­ческого утверждения, необходимо полагаться лишь на понимание и проницательность (нередко в сопровождении громоздких вы­числений), которым ошибки принципиально не свойственны.

 

Я вовсе не хочу сказать, что математики, полагающиеся на понимание, не делают ошибок, — делают, и даже часто: понима­ние тоже можно применить некорректно. Безусловно, математики допускают ошибки и в рассуждениях, и в понимании, а также в сопутствующих вычислениях. Однако склонность к совершению подобных ошибок, в сущности, не усиливает их способности к пониманию (хотя я, пожалуй, могу представить себе, каким об­разом подобные случайные обстоятельства могут порой привести человека к нежданному, скажем так, озарению). Что более важ­но — эти ошибки исправимы, их можно распознать как ошиб­ки, когда на них укажет какой-либо другой математик (или даже впоследствии сам автор). Совсем иначе обстоит дело, когда пони­мание математика контролируется некоей внутренне ошибочной формальной системойв рамках такой системы невозможно распознать ее собственные ошибки. (Что касается возможно­сти существования самосовершенствующейся системы, которая модифицирует самое себя всякий раз, как обнаруживает в себе противоречие, то о ней мы поговорим несколько позднее, «на подступах» к противоречиюТам же мы и обнаружим, что и от такого предположения в данном случае пользы мало; см. также)

 

Ошибки несколько иного рода возникают при неверной фор­мулировке математического утверждения; в этом случае выдви­гающий утверждение математик, возможно, имеет в виду нечто совсем отличное от того, что он буквально утверждает. Впрочем, такие ошибки также исправимы и не имеют ничего общего с теми внутренними ошибками, причиной которых является понима­ние, опирающееся на необоснованную систему(Здесь уместно вспомнить фразу Фейнмана, которую мы цитировали в связи с возражением«Не слушайте, что я говорю; слушайте, что я имею в виду!»). Мы с вами здесь для того, чтобы выяснить, что, в принципе, может (либо не может) быть установлено каким угодно математиком (человеком); ошибки же, подобные только что рассмотренным, — т.е. исправимые ошибки — никакого от­ношения к этой проблеме не имеют. Важнейший, пожалуй, для всего нашего исследования момент: круг идей и понятий, доступ­ных математическому пониманию, непременно должен включать в себя центральную идею доказательства Гёделя—Тьюринга; на этом, собственно, основании мы и не рассматриваем всерьез воз­можность, а возможностьполагаем крайне невероятной. Как уже отмечалось выше (в комментарии к возражению), идея доказательства Гёделя—Тьюринга, безусловно, должна являться частью того, что, в принципе, в состоянии понять математик, даже если какое-то конкретное утверждение, на котором этот математик, возможно, основывается, ошибочно — лишь бы ошибка была исправимой.

 

С возможной «необоснованностью» предполагаемого алго­ритма математического понимания связаны и другие вопросы, о которых не следует забывать. Эти вопросы касаются проце­дур «восходящего» типа — таких, к примеру, как самоусовер­шенствующиеся алгоритмы, алгоритмы обучения (в том числе и искусственные нейронные сети), алгоритмы с дополнительными случайными компонентами, а также алгоритмы, операции кото­рых обусловлены внешним окружением, в котором функциониру­ют соответствующие алгоритмические устройства. Некоторые из упомянутых вопросов были затронуты ранее (см. комментарий к возражению), подробнее же мы рассмотрим их при обсужде­нии случая, к каковому обсуждению мы как раз и приступаем.

 

3.5. Может ли алгоритм быть непознаваемым?

 

В соответствии с вариантом, математическое понимание представляет собой результат выполнения некоего непознавае­мого алгоритма. Что же конкретно означает определение «непо­знаваемый» применительно к алгоритму? В предшествующих разделах настоящей главы мы занимались вопросами принципи­альными. Так, утверждая, что неопровержимая истинность неко­торого-высказывания доступна математическому пониманию человека, мы, по сути, утверждали, что данное-высказывание постижимо в принципе, отнюдь не имея в виду, что каждый ма­тематик когда-нибудь да сталкивался с реальной демонстрацией его истинности. Применительно к алгоритму, однако, нам по­требуется несколько иная интерпретация термина «непознавае­мый». Я буду понимать его так: рассматриваемый алгоритм яв­ляется настолько сложным, что даже описание его практически неосуществимо.

 

Когда мы говорили о выводах, осуществляемых в рамках какой-то конкретной познаваемой формальной системы, или о предполагаемых результатах применения того или иного извест­ного алгоритма, рассуждения в терминах принципиально воз­можного или невозможного и в самом деле выглядели как нельзя более уместными. Вопросы возможности или невозможности вы­вода того или иного конкретного предположения из такой фор­мальной системы или алгоритма рассматривались в «принципи­альном» контексте в силу элементарной необходимости. Похо­жим образом обстоит дело с установлением истинности-высказываний,-высказывание признается истинным, если его можно представить в виде операции некоторой машины Тью­ринга, незавершаемой принципиально, вне зависимости от того, что мы могли бы получить на практике путем непосредствен­ных вычислений. (Об этом мы говорили в комментарии к воз­ражению) Аналогично, утверждение, что какое-то конкрет­ное предположение выводимо (либо невыводимо) в рамках неко­ей формальной системы, следует понимать в «принципиальном» смысле, поскольку такое утверждение, в сущности, представ­ляет собой вид утверждения об истинном (или, соответственно, ложном) характере какого-то конкретного-высказывания (см. окончание обсуждения возражения). Соответственно, когда нас интересует выводимость предположения в рамках некоторого неизменного набора правил, «познаваемость» всегда будет пони­маться именно в таком «принципиальном» смысле.

 

Если же нам предстоит решить вопрос о «познаваемости» самих правил, то здесь необходимо прибегнуть к «практическо­му» подходу. Принципиально возможно описать любую фор­мальную систему, машину Тьюринга, либо-высказывание, а следовательно, если мы хотим, чтобы вопрос об их «непознава­емости» имел хоть какой-нибудь смысл, нам следует рассматри­вать его именно в плоскости возможности их практической ре­ализации. В принципе, познаваемым является абсолютно любой алгоритм, каким бы он ни был, — в том смысле, что осуществля­ющая этот алгоритм операция машины Тьюринга становится «из­вестной», как только становится известным натуральное число, являющееся кодовым обозначением данной операции (например, согласно правилам нумерации машин Тьюринга, приведенным в НРК). Нет решительно никаких оснований предполагать, что принципиально непознаваемым может оказаться такой объект, как натуральное число. Все натуральные числа (а значит, и ал­горитмические операции) можно представить в виде последова­тельностидвигаясь вдоль которой, мы — в принципе — можем со временем достичь любого натураль­ного числа, каким бы большим это число ни было! Практически же, число может оказаться настолько огромным, что добраться до него таким способом в обозримом будущем не представляет­ся возможным. Например, номер машины Тьюринга, описанной в НРК, на с. 56, явно слишком велик, чтобы его можно бы­ло получить на практике посредством подобного перечисления.

 

Даже если мы были бы способны выдавать каждую последую­щую цифру за наименьший теоретически определимый временной промежуток (в масштабе времени Планка равный приблизитель­носм.), то и в этом случае за все время существования Вселенной, начиная от «большого взрыва» и до настоящего момента, нам не удалось бы добраться ни до какого числа, двоичное представление которого содержит более 203 зна­ков. В числе, о котором только что упоминалось, знаков более чем в 20 раз больше — однако это ничуть не мешает ему быть «познаваемым» в принципе, причем в НРК это число определено в явном гиде.

 

Практически «непознаваемыми» следует считать такое на­туральное число (или операцию машины Тьюринга), сложность одного только описания которого оказывается недоступной че­ловеческим возможностям. Сказано, на первый взгляд, довольно громко, однако, зная о конечной природе человека, можно смело утверждать, что какой-то предел так или иначе существовать должен, а следовательно, должны существовать и числа, нахо­дящиеся за этим пределом, описать которые человек не в со­стоянии. (См. также комментарий к возражению) В соответ­ствии с возможностьюнам следует полагать, что за преде­лами познаваемости алгоритм(предположительно лежащий в основе математического понимания) оказывается именно вслед­ствие неимоверной сложности и чрезвычайной детализирован-ности своего описания — причем речь идет исключительно об «описуемости» алгоритма, а не о познаваемости его в качестве алгоритма, которым, как предполагается, мы пользуемся-таки в нашей интеллектуальной деятельности. Требование «неописуе-мости», собственно, и отделяет случайот случаяИными словами, рассматривая случаймы должны учитывать воз­можность того, что наших человеческих способностей может оказаться недостаточно даже для того, чтобы описать это самое число, не говоря уже о том, чтобы установить, обладает ли оно свойствами, какими должно обладать число, определяющее алго­ритмическую операцию, в соответствии с которой работает наше же математическое понимание.

 

Отметим, что в роли ограничителя познаваемости не мо­жет выступать просто величина числа. Не представляет никакой сло

– Конец работы –

Эта тема принадлежит разделу:

Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления

Http hotmix narod ru... РОДЖЕР ПЕНРОУЗ... Тени разума В поисках науки о сознании...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Гёдель и Тьюринг

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Разум и наука
Насколько широки доступные науке пределы? Подвластны ли ее методам лишь материальные свойства нашей Вселенной, тогда как познанию нашей духовной сущности суждено навеки остаться за ра

Спасут ли роботы этот безумный мир?
Открывая газету или включая телевизор, мы всякий раз рис­куем столкнуться с очередным проявлением человеческой глупо­сти. Целые страны или отдельные их области пребывают в вечной конфронтации, кото

Вычисление и сознательное мышление
В чем же здесь загвоздка? Неужели все дело лишь в вычис­лительных способностях, в скорости и точности работы, в объеме памяти или, быть может, в конкретном способе «связи» отдель­ных структурных эл

Физикализм и ментализм
Я должен сделать здесь краткое отступление касательно использования терминов «физикалист» и «менталист», обыч­но противопоставляемых один другому, в нашей конкретной ситуации, т. е. в отношении кра

Вычисление: нисходящие и восходящие процедуры
До сих пор было не совсем ясно, что именно я понимаю под термином «вычисление» в определениях позиций

Противоречит ли точка зрения В тезису Черча—Тьюринга?
Вспомним, что точка зрения предполагает, что обладаю­щий сознанием мозг функционирует так

Аналоговые вычисления
До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга.

Невычислительные процессы
Из всех типов вполне определенных процессов, что приходят в голову, большая часть относится, соответственно, к категории феноменов, называемых мною «вычислительными» (имеются в виду, конечно же, «ц

Завтрашний день
Так какого же будущего для этой планеты нам следует ожи­дать согласно точкам зрения . Есл

Обладают ли компьютеры правами и несут ли ответственность?
С некоторых пор умы теоретиков от юриспруденции начал занимать один вопрос, имеющий самое непосредственное отно­шение к теме нашего разговора, но в некотором смысле более практический). Суть

Доказательство Джона Серла
Прежде чем представить свое собственное рассуждение, хотелось бы вкратце упомянуть о совсем иной линии доказа­тельства — знаменитой «китайской комнате» философа Джона Серла — главным образом для то

Свидетельствуют ли ограниченные возможности сегодняшнего ИИ в пользу ?
Но почему вдруг ? Чем мы реально располагаем, что мож­но было бы интерпретировать

Платонизм или мистицизм?
Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вы

Почему именно математическое понимание?
Все эти благоглупости, конечно, очень (или не очень) заме­чательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы мате­матики и философии ма

Какое отношение имеет теорема Гёделя к «бытовым» действиям?
Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получе­нии осознанных же математических решений в нашем мозге дей­ствительно происходит что

Реальность
Интуитивные математические процедуры, описанные в имеют весьма ярко выраженный специфиче

Воображение?
Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычис­лительным путем. Даже если визуализация действительно осу­ществляется посредством к

Теорема Гёделя и машины Тьюринга
В наиболее чистом виде мыслительные процессы проявля­ются в сфере математики. Если же мышление сводится к вы­полнению тех или иных вычислений, то математическое мыш­ление, по всей видимости,

Вычисления
В этом разделе мы поговорим о вычислениях. Под вычис­лением (или алгоритмом) я подразумеваю действие некоторой машины Тьюринга, или, иными словами, действие компьютера, задаваемое той или ин

Незавершающиеся вычисления
Будем считать, что с задачей (А) нам просто повезло. По­пробуем решить еще одну: (B) Найти число, не являющееся суммой квадратов четырех чи­сел. На этот раз, добравшись до числа 7

Как убедиться в невозможности завершить вычисление?
Мы установили, что вычисления могут как успешно завер­шаться, так и вообще не иметь конца. Более того, в тех слу­чаях, когда вычисление завершиться в принципе не может, это его свойство иногда оказ

Семейства вычислений; следствие Гёделя — Тьюринга
Для того, чтобы понять, каким образом из теоремы Гёделя (в моей упрощенной формулировке, навеянной отчасти идеями Тьюринга) следует все вышесказанное, нам необходимо будет сделать небольшое обобщен

Некоторые более глубокие математические соображения
Для того чтобы лучше разобраться в значении гёделевского доказательства, полезно будет вспомнить, с какой, собственно, целью оно было первоначально предпринято. На рубеже веков ученые, деятельность

Условие -непротиворечивости
Наиболее известная форма теоремы Гёделя гласит, что фор­мальная система F (достаточно обширная) не может быть од­новременно полной и непротиворечивой. Это не совсем та зна­менитая «теорема о неполн

Формальные системы и алгоритмическое доказательство
В предложенной мною формулировке доказательства Гёделя—Тьюринга (см. §2.5) говорится только о «вычислениях» и ни словом не упоминается о «формальных системах». Тем не ме­нее, между этими двумя конц

ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ
Допустим, что у нас имеется некая алгоритмическая про­цедура А, которая, как нам известно, корректно устанавливает незавершаемость тех или иных вычислений. Мы получим вполне явную процедуру

О психофизи(ологи)ческой проблеме
  Комментарии Ю.П.Карпенко к книге Р.Пенроуза: Тени ума: В поисках потерянной науки о сознании.   Как мы видим, выд

PENROSE R. Shadows of the mind: A search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.
  Реферат подготовлен Ю.П.Карпенко   В реферируемой книге крупного английского математика и физика-теоретика Роджера Пенроуза развиваются ид

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги