рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Аналоговые вычисления

Аналоговые вычисления - раздел Физика, Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления До Сих Пор Я Рассматривал «Вычисление» Только В Том Смысле, В Котором Этот Те...

До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным циф­ровым компьютерам или, точнее, к их теоретическим предше­ственникам — машинам Тьюринга. Существуют и другие раз­новидности вычислительных устройств, особенно широко распространенные в не столь отдаленном прошлом; вычислительные операции здесь осуществляются не посредством переходов меж­ду дискретными состояниями «вкл./выкл.», знакомыми нам по цифровым вычислениям, а с помощью непрерывного изменения того или иного физического параметра. Самым известным из та­ких устройств является логарифмическая линейка, изменяемым физическим параметром которой является линейное расстояние (между фиксированными точками на линейке). Это расстояние служит для представления логарифмов чисел, которые нужно пе­ремножить или разделить. Существует много различных разно­видностей аналоговых вычислительных устройств, в которых мо­гут применяться и другие типы физических параметров — такие, например, как время, масса или электрический потенциал.

В случае аналоговых систем необходимо учитывать одно формальное обстоятельство: стандартные понятия вычисления и вычислимости применимы, строго говоря, только к дискретным системам (над которыми, собственно, и выполняются «цифро­вые» действия), но не к непрерывным, таким, например, как расстояния или электрические потенциалы, с которыми имеет дело традиционная классическая физика. Иными словами, для того чтобы применить обычные вычислительные понятия к систе­ме, описание которой требует не дискретных (или «цифровых»), а непрерывных параметров, мы естественным образом должны прибегнуть к аппроксимации. Действительно, при компьютерном моделировании физических систем вообще стандартной проце­дурой является аппроксимация всех рассматриваемых непре­рывных параметров в дискретной форме. Подобная процедура, однако, неминуемо вносит некоторую погрешность, величина ко­торой определяется заданной степенью точности аппроксимации; при этом вполне возможно, что для той или иной интересую­щей нас физической системы заданной точности может оказать­ся недостаточно. В итоге дискретное компьютерное моделиро­вание очень просто может привести нас к ошибочным выводам относительно поведения моделируемой непрерывной физической системы.

В принципе, ничто не мешает повысить точность до уровня, адекватного для моделирования рассматриваемой непрерывной системы. Однако на практике, особенно в случае хаотических систем, требуемые для этого время вычислений и объем памяти могут оказаться непомерно большими. Кроме того, можем ли мы, строго говоря, быть абсолютно уверенными в том, что выбран­ная нами степень точности является действительно достаточ­ной. Необходим какой-то критерий, который позволил бы нам определить, что нужный уровень точности достигнут, дальней­шего ее повышения не требуется и качественному поведению, вычисленному с такой точностью, в самом деле можно доверять. Все это поднимает ряд достаточно щекотливых математических вопросов, рассматривать которые подробно на этих страницах мне представляется не совсем уместным.

Существуют, однако, и другие подходы к проблемам вычис­лений в случае непрерывных систем; например, такие, в кото­рых непрерывные системы рассматриваются как самостоятель­ные математические структуры со своим собственным понятием «вычислимости» — понятием, обобщающим идею вычислимо­сти по Тьюрингу с дискретных величин на непрерывные. При таком подходе исчезает необходимость в аппроксимации непре­рывной системы дискретными параметрами с целью применить к ней традиционную концепцию вычислимости по Тьюрингу. Такие идеи вызывают определенный интерес с математической точки зрения; к сожалению, им, как нам представляется, не достает пока той неотразимой естественности и уникальности, которые присущи стандартному понятию вычислимости по Тьюрингу для дискретных систем. Более того, вследствие определенной непо­следовательности данного подхода, формально «невычислимы­ми» оказываются и некоторые простые системы, в применении к которым подобная терминология выглядит как-то не совсем уместно (даже такие, например, как известное всем из физики простое «волновое уравнение»; см. [313] и НРК, с. 187-188). С другой стороны, следует упомянуть и об одной сравнительно недавней работе ([327]), в которой показано, что теоретические аналоговые компьютеры, объединяемые в некоторый достаточно обширный класс, не могут выйти за рамки обычной вычисли­мости по Тьюрингу. Я надеюсь, что дальнейшие исследования должным образом осветят эти безусловно интересные и важные темы. Пока же у меня нет оснований полагать, что работы в этом направлении в целом уже достигли той стадии завершенности, чтобы их результаты можно было применить к рассматриваемым здесь проблемам.

В этой книге меня в особенности занимает вопрос о вычисли­тельной природе умственной деятельности, где термин «вычислительный» следует рассматривать в стандартном смысле вычис­лимости по Тьюрингу. В самом деле, компьютеры, которыми мы сегодня повседневно пользуемся, являются цифровыми, и имен­но это их свойство оказывается существенным для современных разработок в области ИИ. Наверное, логичным будет предпо­ложить, что в будущем может появиться «компьютер» какого-то иного типа, решающую роль в функционировании которого будут играть (пусть даже и не выходя при этом за общепринятые теоретические рамки современной физики) непрерывные физиче­ские параметры, что позволит такому компьютеру демонстриро­вать поведение, существенно отличное от поведения цифрового компьютера.

Как бы то ни было, все эти вопросы важны, главным об­разом, для проведения границы между «сильной» и «слабой» версиями позиции . Согласно слабой версии , поведение об­ладающего сознанием человеческого мозга обусловлено некото­рой физической активностью, которую невозможно вычислить в стандартном смысле дискретной вычислимости по Тьюрингу, но которую можно полностью объяснить в рамках современных фи­зических теорий. Если так, то эта активность, по всей видимости, должна зависеть от каких-то непрерывных физических парамет­ров таким образом, чтобы ее невозможно было адекватно вос­произвести с помощью стандартных цифровых процедур. В со­ответствии же с сильной версией , невычислимость сознатель­ной деятельности мозга может быть исчерпывающе объяснена в рамках некоторой невычислительной физической теории (пока еще не открытой), следствия из которой, собственно, и обуслов­ливают упомянутую деятельность. Хотя второй вариант может показаться несколько надуманным, альтернатива (для сторон­ников ) и в самом деле состоит в отыскании для какого-либо непрерывного процесса в рамках известных физических законов такой роли, которую невозможно было бы адекватно воспроизве­сти посредством каких угодно вычислений. На данный же момент, несомненно, следует ожидать, что для любой достоверной анало­говой системы любого типа из тех, что получили более или менее серьезное рассмотрение, обязательно окажется возможным (по крайней мере, в принципе) создать эффективную цифровую мо­дель.

Даже если не принимать во внимание всевозможные теоре­тические проблемы общего плана, на сегодняшний день наибольшее превосходство перед аналоговыми вычислительными систе­мами демонстрируют именно цифровые компьютеры. Цифровые вычисления имеют гораздо более высокую точность благодаря, в основном, тому, что при хранении данных в цифровом виде по­вышение точности обеспечивается простым увеличением разряд­ности чисел, что легко достижимо с помощью весьма скромного увеличения (логарифмического) мощности компьютера; в ана­логовых же машинах (по крайней мере, в полностью анало­говых, в конструкцию которых не заложено никаких цифровых концепций) увеличения точности можно добиться лишь посред­ством весьма и весьма значительного увеличения (линейного) со­ответствующих параметров. Возможно, когда-нибудь в будущем возникнут новые идеи, которые пойдут на пользу аналоговым вы­числителям, однако в рамках современной технологии большая часть существенных практических преимуществ принадлежит, по всей видимости, цифровому вычислению.

– Конец работы –

Эта тема принадлежит разделу:

Часть I. ПОЧЕМУ ДЛЯ ПОНИМАНИЯ РАЗУМА НЕОБХОДИМА НОВАЯ ФИЗИКА? Невычислимость сознательного мышления

Http hotmix narod ru... РОДЖЕР ПЕНРОУЗ... Тени разума В поисках науки о сознании...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Аналоговые вычисления

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Разум и наука
Насколько широки доступные науке пределы? Подвластны ли ее методам лишь материальные свойства нашей Вселенной, тогда как познанию нашей духовной сущности суждено навеки остаться за ра

Спасут ли роботы этот безумный мир?
Открывая газету или включая телевизор, мы всякий раз рис­куем столкнуться с очередным проявлением человеческой глупо­сти. Целые страны или отдельные их области пребывают в вечной конфронтации, кото

Вычисление и сознательное мышление
В чем же здесь загвоздка? Неужели все дело лишь в вычис­лительных способностях, в скорости и точности работы, в объеме памяти или, быть может, в конкретном способе «связи» отдель­ных структурных эл

Физикализм и ментализм
Я должен сделать здесь краткое отступление касательно использования терминов «физикалист» и «менталист», обыч­но противопоставляемых один другому, в нашей конкретной ситуации, т. е. в отношении кра

Вычисление: нисходящие и восходящие процедуры
До сих пор было не совсем ясно, что именно я понимаю под термином «вычисление» в определениях позиций

Противоречит ли точка зрения В тезису Черча—Тьюринга?
Вспомним, что точка зрения предполагает, что обладаю­щий сознанием мозг функционирует так

Невычислительные процессы
Из всех типов вполне определенных процессов, что приходят в голову, большая часть относится, соответственно, к категории феноменов, называемых мною «вычислительными» (имеются в виду, конечно же, «ц

Завтрашний день
Так какого же будущего для этой планеты нам следует ожи­дать согласно точкам зрения . Есл

Обладают ли компьютеры правами и несут ли ответственность?
С некоторых пор умы теоретиков от юриспруденции начал занимать один вопрос, имеющий самое непосредственное отно­шение к теме нашего разговора, но в некотором смысле более практический). Суть

Доказательство Джона Серла
Прежде чем представить свое собственное рассуждение, хотелось бы вкратце упомянуть о совсем иной линии доказа­тельства — знаменитой «китайской комнате» философа Джона Серла — главным образом для то

Свидетельствуют ли ограниченные возможности сегодняшнего ИИ в пользу ?
Но почему вдруг ? Чем мы реально располагаем, что мож­но было бы интерпретировать

Платонизм или мистицизм?
Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вы

Почему именно математическое понимание?
Все эти благоглупости, конечно, очень (или не очень) заме­чательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы мате­матики и философии ма

Какое отношение имеет теорема Гёделя к «бытовым» действиям?
Допустим однако, что мы все уже согласны с тем, что при формировании осознанных математических суждений и получе­нии осознанных же математических решений в нашем мозге дей­ствительно происходит что

Реальность
Интуитивные математические процедуры, описанные в имеют весьма ярко выраженный специфиче

Воображение?
Говоря о мысленной визуализации, мы ни разу не указали явно на невозможность воспроизведения этого процесса вычис­лительным путем. Даже если визуализация действительно осу­ществляется посредством к

Теорема Гёделя и машины Тьюринга
В наиболее чистом виде мыслительные процессы проявля­ются в сфере математики. Если же мышление сводится к вы­полнению тех или иных вычислений, то математическое мыш­ление, по всей видимости,

Вычисления
В этом разделе мы поговорим о вычислениях. Под вычис­лением (или алгоритмом) я подразумеваю действие некоторой машины Тьюринга, или, иными словами, действие компьютера, задаваемое той или ин

Незавершающиеся вычисления
Будем считать, что с задачей (А) нам просто повезло. По­пробуем решить еще одну: (B) Найти число, не являющееся суммой квадратов четырех чи­сел. На этот раз, добравшись до числа 7

Как убедиться в невозможности завершить вычисление?
Мы установили, что вычисления могут как успешно завер­шаться, так и вообще не иметь конца. Более того, в тех слу­чаях, когда вычисление завершиться в принципе не может, это его свойство иногда оказ

Семейства вычислений; следствие Гёделя — Тьюринга
Для того, чтобы понять, каким образом из теоремы Гёделя (в моей упрощенной формулировке, навеянной отчасти идеями Тьюринга) следует все вышесказанное, нам необходимо будет сделать небольшое обобщен

Некоторые более глубокие математические соображения
Для того чтобы лучше разобраться в значении гёделевского доказательства, полезно будет вспомнить, с какой, собственно, целью оно было первоначально предпринято. На рубеже веков ученые, деятельность

Условие -непротиворечивости
Наиболее известная форма теоремы Гёделя гласит, что фор­мальная система F (достаточно обширная) не может быть од­новременно полной и непротиворечивой. Это не совсем та зна­менитая «теорема о неполн

Формальные системы и алгоритмическое доказательство
В предложенной мною формулировке доказательства Гёделя—Тьюринга (см. §2.5) говорится только о «вычислениях» и ни словом не упоминается о «формальных системах». Тем не ме­нее, между этими двумя конц

ГЕДЕЛИЗИРУЮЩАЯ МАШИНА ТЬЮРИНГА В ЯВНОМ ВИДЕ
Допустим, что у нас имеется некая алгоритмическая про­цедура А, которая, как нам известно, корректно устанавливает незавершаемость тех или иных вычислений. Мы получим вполне явную процедуру

Гёдель и Тьюринг
В главе 2 была предпринята попытка продемонстрировать мощь и строгий характер аргументации в пользу утверждения (обозначенного буквой ^), суть которого заключается в том, что математическое пониман

О психофизи(ологи)ческой проблеме
  Комментарии Ю.П.Карпенко к книге Р.Пенроуза: Тени ума: В поисках потерянной науки о сознании.   Как мы видим, выд

PENROSE R. Shadows of the mind: A search for the missing science of consciousness. - Oxford, 1994. - XVI, 457 p.
  Реферат подготовлен Ю.П.Карпенко   В реферируемой книге крупного английского математика и физика-теоретика Роджера Пенроуза развиваются ид

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги