рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Электрическая емкость. Конденсатор. Способы изменения электрической емкости конденсаторов. Параллельное и последовательное соединения конденсаторов.

Электрическая емкость. Конденсатор. Способы изменения электрической емкости конденсаторов. Параллельное и последовательное соединения конденсаторов. - раздел Электротехника, Электрические заряды. Строение атома. Энергетические уровни и энергетические зоны. Положительные и отрицательные ионы Проводники Различной Формы И Различного Размера, Заряженные Одинаковым Количе...

Проводники различной формы и различного размера, заряженные одинаковым количеством электричества, приобретают различные потенциалы. Это является следствием того, что такие проводники обладают различной электроемкостью. При одной и той же форме большую емкость будут иметь тела больших размеров. Так, например, емкость шара прямо пропорциональна его емкости.

Емкость тел зависит от близости окружающих предметов и их физических свойств. При приближении к проводнику другого проводника его емкость увеличивается.

В международной системе единиц за единицу емкости принята емкость такого проводника, потенциал которого при увеличении заряда на 1 кулон повышается на 1 вольт. Эта единица называется фарадой (Ф).

1фарад=1кулон/1вольт.

Это очень большая величина. На практике применяются меньшие единицы: микрофарада (мкФ), равная 10^-6Ф и пикофарада (пФ), равная 10^-12 Ф.

Два проводника, изолированные один от другого и помещенные в непосредственной близости, образуют конденсатор. Емкость конденсатора зависит от площади поверхности проводников, которые выполняются в виде пластин. Для увеличения емкости увеличивают число пластин, соединяя их вместе с одной стороны (рис 1 а)

Пластины называют обкладками конденсатора. Они могут быть самых различных форм.

Емкость конденсатора С численно равна заряду, который ему надо сообщить, чтобы разность потенциалов между его обкладками равнялась 1 вольту:

C=q/(2-1)=q/U (1.3)

Электрическое поле конденсатора сосредоточено между обкладками и поэтому окружающие конденсатор тела практически не влияют на его емкость.

При введении между обкладками конденсатора диэлектрика его емкость увеличивается. Степень увеличения емкости зависит от типа диэлектрика, т.е. от его диэлектрической проницаемости:

=C/C0,

где, C0 - емкость конденсатора с воздушным диэлектриком; С - емкость того же конденсатора с твердым или жидким диэлектриком.

Емкость конденсатора зависит также от расстояния d между его обкладками. Формула для определения емкости плоского конденсатора с двумя пластинами, учитывающая все выше перечисленные факторы, имеет вид:

C=S/(4d)*1/(9e11) (Ф) (1.4)

Здесь S - площадь одной из пластин, см^2, d- расстояние между пластинами (толщина диэлектрика) , см, - диэлектрическая проницаемость.

Для увеличения площади обкладок последние выполняются в виде двух полосок фольги, свернутых в рулон и изолированных друг от друга бумажной лентой. При этом увеличиваются габариты конденсатора.

Уменьшение расстояния между обкладками конденсатора с целью увеличения его емкости наиболее эффективным сказывается в электролитических (оксидных) конденсаторах, в которых в качестве диэлектрика используется тонкая пленка окисла аммония. Однако уменьшение d уменьшает электрическую прочность конденсатора (т.е. из-за избежания электрического пробоя, выводящего конденсатор из строя) снижается его рабочее напряжение.

Наиболее эффективным способом увеличения емкости конденсаторов является применение в них диэлектриков с большим значением диэлектрической постоянной (например керамический).

Для увеличения емкости конденсаторы соединяю параллельно (рис1 б). При этом общая емкость полученной батареи равна суме емкостей всех входящих в нее конденсаторов: Спар123. При последовательном соединении конденсаторов общая емкость Спосл оказывается меньше наименьшей емкости входящих в батарею конденсаторов и может быть определено по формуле:

1/Cпосл=1/C1+1/C2+1/C3

 

Рис. 1

 


– Конец работы –

Эта тема принадлежит разделу:

Электрические заряды. Строение атома. Энергетические уровни и энергетические зоны. Положительные и отрицательные ионы

При внесении в германий или кремний пятивалентных элементов фосфора Р мышьяка As сурьмы Sb и др четыре валентных электрона примесных атомов... Появление свободных электронов не сопровождается разрушением ковалентных... Подвижные носители заряда преобладающие в ПП наз основными Т о в ПП n типа основными подвижными носителями заряда...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электрическая емкость. Конденсатор. Способы изменения электрической емкости конденсаторов. Параллельное и последовательное соединения конденсаторов.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Электрические заряды. Строение атома. Энергетические уровни и энергетические зоны. Положительные и отрицательные ионы.
Первые сведения о некоторых электрических явлениях относятся к глубокой древности. Еще за 600 лет до н.э. греческий философ Фалес Милетский описал замеченную ткачами способность янтаря, потертого о

Электрическое поле. Взаимодействие электрических зарядов с электрическим полем. Закон Кулона.
Электрическое поле является особой формой движения материи. Оно может воздействовать на находящееся в его пределах наэлектризованное тело. Электрическое поле существует вокруг каждого наэл

Электрический потенциал и разность потенциалов.
Потенциал электрического поля характеризует значение потенциальной энергии, которой обладает единица заряда в да

Постоянный электрический ток. Условия существования электрического тока. Направление, сила и плотность постоянного электрического тока.
При отсутствии электрического поля в проводнике находящиеся в нем свободные электроны совершают хаотическое (беспорядочное) движение. Если же в проводнике создать электрическое поле, то движение эл

Электрическое сопротивление. Единицы измерения сопротивления. Зависимость сопротивления от температуры.
Электроны, двигаясь в проводнике под действием электрического поля, испытывают сопротивление своему движению из-за столкновения с неподвижными атомами и молекулами проводника. Это сопротивление раз

Резисторы. Виды резисторов. Параллельные и последовательные соединения резисторов.
В электрических схемах необходимые сопротивления участков цепей создается с помощью специальных радиоэлементов, называемых резисторами. Они могут быть постоянными (рис1 а), подстроечными (рис1 б) и

Закон Ома для участка и полной электрической цепи.
Как было отмечено в п. 1.5.1. сила тока в цепи при неизменном значении э.д.с. источника питания зависит от сопротивления этой цепи. Эта зависимость была установлена немецким ученым Георгом Омом в 1

Законы Кирхгофа.
Первый закон Кирхгофа гласит, что сумма всех токов, протекающих через узел, равна нулю. Согласно этому закону применительно к узлу А (рис 1 а) можно записать: I1+I2-I

Работа и мощность электрического тока.
Работа электрического тока определяется формулой: A=U*I*t (1.11) Работу, совершаемую в единицу времени называют мощностью: P=A/t=U*I (1.12) Если напряжение U измеряется в

Основные сведения о полупроводниках. Разрешенные и запрещенные зоны. Валентная зона и зона проводимости.
Полупроводники - в-ва, которые по своей электропроводности занимают промежуточное значение между проводниками и диэлектриками. Отличительной особенностью п/п является силь

Неравновесная и избыточная концентрации основных и неосновных носителей зарядов в полупроводнике.
В стдр в ПП устанавливается равновесная концентрация основных и неосн. носителей заряда(nn0,pn0-в ПП n-типа, np0,pn0-в ПП p-типа). Однако кроме теплового

Диффузионный и дрейфовый токи в полупроводнике. Причины, вызывающие их появление. Формулы для плотностей токов.
В ПП свободные электроны и дырки нах в состоянии хаотического движения. При помещении ПП в электрическое поле с напряжённостью Е движение электронов и дырок упорядочивается: электроны приобретают п

Обратное включение ЭДП. Обратный ток. Включение обратного напряжения на ширину запирающего слоя. Энергетическая диаграмма.
Если источник внешнего напряжения подключить '+' к n-обл., а '-' к р-обл.(рис. 1а), то напряжённость в области объёмного заряда увеличится до значения Едиф+Еобр, что приведёт

Вольтамперная характеристика ЭДП (ВАХ). Уравнение теоретической ВАХ и ее график.
Вольт-амперной характеристикой(ВАХ) наз. графическую зависимость тока, протекающего через ЭДП, от значения и полярности прикладываемого к нему внешнего напряжения. Аналитическое выражение этой зави

Емкость ЭДП. Зарядная и диффузионная емкости, их физическая интерпретация. Графическая зависимость зарядной емкости от обратного напряжения.
Изменение внешнего напряжения U, приложенного к ЭДП, на значение dU приводит к изменению заряда Q, создаваемого положительными и отрицательными ионами в переходе, а также переносимого через переход

Прямое включение ЭДП
Прямым называется такое включение ЭДП, при котором к нему подключается источник внешнего напряжения Uпр плюсом к p-области и минусом к n-области (рис. 2.7,а). Напряжённость электрического

Туннельные диоды. Энергетическая диаграмма при прямом и обратном включениях. ВАХ. Пояснить появление на ВАХ участка с отрицательным сопротивлением.
Туннельными наз. ППД, у которых за счёт туннельного эффекта на прямой ветви ВАХ существует область с отрицательным дифференциальным сопротивлением. Туннельный эффект наблюдается при контак

Влияние температуры на статические характеристики БТ.
С увеличением температуры увеличивается количество генерируемых в p- и n- областях пар электрон-дырка. Это приводит к увеличению в этих областях не основных носителей заряда и пропорциональным сниж

Малосигнальные h-параметры БТ, включенного по схеме ОЭ. Формулы и методика определения по статическим гибридным характеристикам.
Если в эмит. цепь транзистора кроме постоянного напряжения, смещающего ЭП подать изменяющееся во времени напряжение, то результат на эмит. переходе будет определятся алгебраической суммой этих напр

Определение H-параметров по характеристикам.
Параметры h11Э и h12Э определяются по входным характеристикам (рис. 4.11, а): h11Э=

Нагрузочные характеристики транзисторных усилителей. Уравнение, методика построения.
Включенные нагрузки в коллекторную цепь транзистора, работающего в усилительном каскаде, приводит к тому, что изменения коллекторного тока зависят как от изменений входного тока, так и от связанног

Параметры режима усиления. Формулы, методика определения по статическим гибридным характеристикам в схеме ОЭ,OБ
Основными параметрами, характеризующими режим усиления, являются: 1. Коэффициент усиления по напряжению: Kn=Vmвых/Umвх; (4.24) 2. Коэффициент усиления по току: K

Факторы, ограничивающие полезную выходную мощность БТ. Определение рабочей области на выходных статических гибридных характеристиках.
Полезная мощность на выходе транзисторного усилителя, как это видно из (4.25) определяется амплитудными значениями коллекторного тока ImK и коллекторного напряжения UmKK. Одна

Устройство, принцип действия, статические характеристики и параметры МДП-транзисторов с индуцированным каналом п- и р- типов.
Упрощенная структура МДП-транзистора с индуцированным каналом р-типа показана на рис. 5.1. В подложке из кремния n-типа с высоким удельным сопротивлением методом диффузии созданы две сильно легиров

Устройство, принципы действия статические характеристики и параметры МДП-транзистора с управляющим р-п-переходом.
Структура такого транзистора изготовленного на основе полупроводника n-типа, показаны на рис.5.5, a. В полупроводнике n-типа созданы две области р-типа, образующие управляющий электрод - затвор. На

Устройство, принцип действия, статические характеристики и параметры МЕП-транзисторов.
Эти транзисторы являются основными активными элементами арсенид галлиевых микросхем. Одна из первых структур такого транзистора показана на рис.5.8 а. На полудиэлектрической подложке арсенида галли

Дифференциальные параметры полевых транзисторов и методика их определения по статическим характеристикам.
Свойства ПТ удобно рассматривать в Y-системе параметров, в которой в качестве функций используется входной и выходной токи, а аргументами служат входное выходное напряжения

Этапы изготовления полупроводниковых ИМС, обеспечивающие формирование в кристалле полупроводника транзисторной структуры.
Большинство полупроводниковых ИМС изготавливаются по планарно-эпитаксиальной технологии, сущность которой заключается в следующем. На кремневой подложке р-типа монокристаллический высокоомный слой

Интегральные транзисторы n-p-n и p-n-p. Способ увеличения коэффициента передачи тока h21Э транзистора типа p-n-p. Многоколлекторный транзистор.
Иногда в одном кристалле требуется создавать БТ типа n-p-n и p-n-p. В этом случае транзистор p-n-p изготовляют как горизонтальный (рис.6.4, а). Его недостатком является малое значение коэффициента

Интегральные транзисторы с инжекционным питанием. Структурная и эквивалентная схемы. Принципа работы.
Другой разновидностью биполярных интегральных транзисторов являются транзисторы с инжекционным питанием (рис.6.7, а). Области р1, n1 и р2 образуют горизонтальный p-n-p транзистор VT1, а области n1,

Диоды, резисторы и конденсаторы полупроводниковых ИМС.
Диоды биполярных проводниковых ИМС, как правило, представляют собой транзисторы в диодном включении (рис.6.3). В качестве резисторов в полупроводниковых ИМС применяются базовые слои транзи

Пленочные и гибридные ИМС, их отличительные особенности от полупроводниковых ИМС.
В пленочных ИМС пассивные элементы (конденсаторы, резисторы, небольшие индуктивности) выполняются в виде проводящих, резистивных и диэлектрических пленок, наносимых на общую диэлектрическую подложк

Фоторезисторы
Фоторезистором называют полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, в котором используется явление фотопроводимости, т е изменение электрической проводимости полупроводник

Фотоприемники
Фотоприемники - это оптоэлектронные приборы, предназначенные для преобразования энергии- оптического излучения в электрическую энергию Функции фотоприемников могут выполнять фоторезисторы, фотодиод

Фототранзисторы
Фототранзистором называют полупроводниковый управляемый оптическим излучением прибор с двумя взаимодействующими p-n-переходами (рис. 7.6) Фототранзисторы, как и обычные транзисторы, могут

Светодиод
Одним из наиболее распространенных источников оптического излучения является светодиод- полупроводниковый прибор с одним или несколькими электрическими переходами, преобразующий электрическую энерг

Оптопары
Оптопара (оптрон) -оптоэлектрический п/п прибор, содержащий излучающий и принимающи элементы, оптически и конструктивно связанные друг с другом. В качестве излучателя обычно используются СИД, а в к

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги