рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Статистика Дарбина-Уотсона.

Статистика Дарбина-Уотсона. - раздел Философия, Лекция 1. Предмет, задачи и методы эконометрики Статистическая Значимость Коэффициентов Регрессии И Близкое К Единице Значени...

Статистическая значимость коэффициентов регрессии и близкое к единице значение коэффициента детерминации R2 не гарантируют высокое качество уравнения регрессии. Для иллюстрации этого факта весьма нагляден пример, в котором анализируется зависимость реального объема потребления CONS (млрд. $, в ценах 1982 года) от численности населения POP (млн. чел.) в США в 1931—1990 годах. Корреляционное поле статистических данных изображено на рис1.

Рис.1. Корреляционное поле статистических данных

Линейное уравнение регрессии, построенное по МНК по реальным статистическим данным, имеет вид: СONS =-1817,3 + 16,7РОР. Стандартные ошибки коэффициентов Sb0= 84,7, Sb1=0,46. Следовательно, их t-статистики tb0=-21,4 , tb1=36,8. Эти значения существенно превышают 3, что свидетельствует о статистической значимости коэффициентов. Коэффициент детерминации R2 = 0,96 (т.е. уравнение «объясняет» 96% дисперсии объема потребления). Однако по расположению точек на корреляционном поле видно, что зависимость между POP и CONS не является линейной, а будет скорее экспоненциальной. Для качественного прогноза уровня потребления линейная функция, безусловно, не может быть использована. Таким образом, при весьма хороших значениях t-статистик и F-статистики предложенное уравнение регрессии не может быть признано удовлетворительным (отметим, что R =0,96, скорее всего, в силу того, что и CONS и POP имели временной тренд). Можно ли определить причину этого?

Нетрудно заметить, что в данном случае не выполняются необходимые предпосылки МНК об отклонениях ei точек наблюдений от линии регрессии. Эти отклонения явно не обладают постоянной дисперсией и не являются взаимно независимыми. Нарушение необходимых предпосылок делает неточными полученные оценки коэффициентов регрессии, увеличивая их стандартные ошибки, и обычно свидетельствует о неверной спецификации самого уравнения.

Поэтому следующим этапом проверки качества уравнения регрессии является проверка выполнимости предпосылок МНК.

Оценивая линейное уравнение регрессии, мы предполагаем, что реальная взаимосвязь переменных линейна, а отклонения от регрессионной прямой являются случайными, независимыми друг от друга величинами с нулевым математическим ожиданием и постоянной дисперсией. Если эти предположения не выполняются, то оценки коэффициентов регрессии не обладают свойствами несмещенности, эффективности и состоятельности, и анализ их значимости будет неточным.

Причинами, по которым отклонения не обладают перечисленными выше свойствами, могут быть либо нелинейный характер зависимости между рассматриваемыми переменными, либо наличие не учтенного в уравнении существенного фактора. Действительно, при нелинейной зависимости между переменными отклонения от прямой регрессии не случайно распределены вокруг нее, а обладают определенными закономерностями, которые зачастую выражаются в существенном преобладании числа пар соседних отклонений ei-1 и ei с совпадающими знаками над числом пар с противоположными знаками.

При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки, а именно: условия статистической независимости отклонений между собой. Поскольку значения ei теоретического уравнения регрессии Y=β01x+e остаются неизвестными ввиду неопределенности истинных значений коэффициентов регрессии, то проверяется статистическая независимость их оценок - отклонений ei, i=1,2,...,n. При этом обычно проверяется их некоррелированность, являющаяся необходимым, но недостаточным условием независимости. Причем проверяется некоррелированность не любых, а только соседних величин ei. Соседними обычно считаются соседние во времени (при рассмотрении временных рядов) или по возрастанию объясняющей переменной X (в случае перекрестной выборки) значения еi

Для этих величин несложно рассчитать коэффициент корреляции, называемый в этом случае коэффициентом автокорреляции первого порядка: При этом учитывается, что M(ei) = 0, i=1,2,...,n.

На практике для анализа коррелированности отклонений вместо коэффициента корреляции используют тесно с ним связанную статистику Дарбина— Уотсона DW, рассчитываемую по формуле:

 

Если ei = еi-1, то rei.e-1=1 и DW = 0. Если еi=-еi-1; , то rei.e-1=-1 и DW = 4. Во всех других случаях 0 < DW < 4 .

К этому же результату можно подойти с другой стороны. Если каждое следующее отклонение ei приблизительно равно предыдущему, ei-1, то каждое слагаемое (e1-ei-1) в числителе дроби близко к нулю. Тогда, очевидно, числитель дроби будет существенно меньше знаменателя и, следовательно, статистика DW окажется близкой к нулю.

Например, для зависимости CONS и POP (рис. 1) DW = 0,045, что очень близко к нулю и подтверждает наличие положительной автокорреляции остатков первого порядка (линейной зависимости между остатками).

В другом крайнем случае, когда точки наблюдений поочередно отклоняются в разные стороны от линии регрессии, случай отрицательной автокорреляции остатков первого порядка. При случайном поведении отклонений можно предположить, что в одной половине случаев знаки последовательных отклонений совпадают, а в другой — противоположны. Так как абсолютная величина отклонений в среднем предполагается одинаковой, то можно считать, что в половине случаев ei = еi-1, а в другой еi=-еi-1. Тогда DW =2

Таким образом, необходимым условием независимости случайных отклонений является близость к двойке значения статистики Дарбина—Уотсона. Это означает, что построенная линейная регрессия, вероятно, отражает реальную зависимость.

Возникает вопрос, какие значения DW можно считать статистически близкими к двум?

Для ответа на этот вопрос разработаны специальные таблицы критических точек статистики Дарбина—Уотсона, позволяющие при данном числе наблюдений n, количе­стве объясняющих переменных m и заданном уровне значимости α определять границы приемлемости (критические точки) наблюдаемой статистики DW. Для заданных α,n,m в таблице указываются два числа: dl— нижняя граница и du — верхняя граница. Для проверки гипотезы об отсутствии автокорреляции остатков используется числовой отрезок, изображенный на рис. 2.

Рис.2. Числовой отрезок.

Выводы осуществляются по следующей схеме.

  1. Если DW<dl, то это свидетельствует о положительной автокорреляции остатков.
  2. Если DW>4-dl, то это свидетельствует об отрицательной автокорреляции остатков.
  3. При du<DW< 4-du гипотеза об отсутствии автокорреляции остатков принимается.
  4. Если dl<DW<du, или 4-du<DW<4-dl , то гипотеза об отсутствии автокорреляции не может быть ни принята, ни отклонена.

Не обращаясь к таблице критических точек Дарбина—Уотсона, можно пользоваться «грубым» правилом и считать, что автокорреляция остатков отсутствует, если 1,5<DW<2,5. Для более надежного вывода целесообразно обращаться к табличным значениям.

При наличии автокорреляции остатков полученное уравнение регрессии обычно считается неудовлетворительным.

Пример. Анализируется объем S сбережений домохозяйства за 10 лет. Предполагается, что его размер St в текущем году t зависит от величины yt- располагаемого дохода Y в предыдущем году и от величины Zt реальной процентной ставки Z в рассматриваемом году. Статистические данные представлены в таблице:

Год
Y, тыс. у.е.
Z, %
S, тыс. у.е.

Необходимо:

а) по МНК оценить коэффициенты линейной регрессии S =β01Y+β2Z;

б) оценить статистическую значимость найденных эмпирических коэффициентов регрессии b0, b1, b2;

в) построить 95% -е доверительные интервалы для найденных коэффициентов;

г) вычислить коэффициент детерминации R2 и оценить его статистическую значимость при α = 0,05;

д) определить, какой процент разброса зависимой переменной объясняется данной регрессией (значимость R2 по Фишеру);

е) вычислить статистику DW Дарбина—У отсона и оценить наличие автокорреляции;

ж) сделать выводы по качеству построенной модели;

з) спрогнозировать средний объем сбережений в 1991 году, если предполагаемый доход составит 270 тыс. у.е., а процентная ставка будет равна 5,5.

Расчет коэффициентов проводится по формулам: b0= 5,9619423; b1= 0,126189; b2= 3,24841/

Найденное уравнение позволяет рассчитать модельные значения sj зависимой переменной S и вычислить отклонения ei реальных значений от модельных:

Год S S* ei ei2 ei-ei-1 (ei-ei-1)2
22,48852 -2,48852 6,19273 - -.
23,73041 1,269594 1,61187 3,75811 14,12339
31,00991 -1,00991 1,01992 -2,27950 5,19612
28,69796 1,30204 1,69523 2,31194 5,34507
33,49369 1,50631 2,26896 0,20427 0,04173
37,04753 0,95247 0,90719 -0,55384 0,30674
39,53131 0,46869 0,21967 -0,48378 0,23404
38,46125 -0,46125 0,21275 -0,92994 0,86479
45,74076 -1,74076 3,03024 -1,27951 1,63714
51,77838 -1,77838 3,16263 -0,03762 0,00141
53,02027 1,97973 3,91933 3,78811 14,12332
Сумма ≈0 24,24058 - 41,87375
Среднее 36,81818 36,81818 - - - -

Проанализируем статистическую значимость коэффициентов регрессии, предварительно рассчитав их стандартные ошибки. Стандартная ошибка регрессии S=1,7407. Следовательно, дисперсии и стандартные ошибки коэффициентов равны:

Sb0= 1,8929; Sb1= 0,0212; Sb2= 1,0146.

Рассчитаем соответствующие t-статистики: tb0= 1,565; tb1= 5,858; tb2= 3,503.

На первый взгляд (используя «грубое» правило), только статистическая значимость свободного члена вызывает сомнения. Два других коэффициента имеют t-статистики, превышающие тройку, что является признаком их высокой статистической значимости. Однако убедимся в таком выводе на основе более детального анализа.

Для использования таблиц критических точек необходимо выбрать требуемый уровень значимости. Обычно это прерогатива исследователя.

 

– Конец работы –

Эта тема принадлежит разделу:

Лекция 1. Предмет, задачи и методы эконометрики

Цели и задачи изучения темы... изучить предмет задачи и методы эконометрики... Основные понятия эконометрики Измерения в экономике Наблюдение сводка и группировка статистических данных...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Статистика Дарбина-Уотсона.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Наблюдение, сводка и группировка статистических данных.
Объект наблюдения – явление или совокупность явлений, информацию о которых собирают в процессе наблюдения. В зависимости от цели наблюдения объектами наблюдения могут стать различные территории, от

Цели и задачи изучения темы
изучить понятия статистического ряда распределения, вариационного ряда распределения (дискретного/интервального); исследовать статистическое распределение выборки; определять величины интервала; из

Статистическим распределением выборки.
Статистическим распределением выборкиназывают перечень вариант и соответствующих им частот (или относительных частот). Статистическое распределение выборки можно задать в виде таблицы, в п

Определение величины интервала. Формула Стерджесса.
Величина интервала - разность между наибольшим и наименьшим значениями признака в каждой группе, называемыми границами интервала.

Графический способ изображения статистических данных.
Графическим способом изображения статистических данных называют их условное изображение при помощи точек, линий, плоскостей, геометрических фигур и условных знаков. Графики в статистике применяются

Резюме по теме
Результаты сводки и группировки материалов статистического наблюдения оформляются в виде статистических рядов распределения. Статистический ряд распределения представляет собой упорядоченн

Цели и задачи изучения темы
изучить абсолютные и относительные величины; средние величины (понятие средней величины, формула степенной средней, формула средней геометрической, свойство мажорантности средних, мода, медиана, фо

Абсолютные и относительные величины.
В результате статистического наблюдения, сводки и группировки собранного статистического материала получена разносторонняя информация об изучаемых процессах и явлениях. Итоговые данные по изучаемой

Средние величины.
Средняя величина представляет собой обобщенную характеристику совокупности однородных явлений по какому-либо одному количественно варьируемому признаку. Средние величины играют важную роль

Показатели вариации признака
Под вариациейв статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различны

Резюме по теме
Различают два вида обобщающих показателей, характеризующих количественную сторону исследуемых явлений и процессов: абсолютные и относительные. Абсолютные показатели - именованные числа, им

Законы распределения случайных величин
Экономические показатели, как правило, являются случайными величинами. Случайной величиной называется величина, которая в результате опыта (испытания) может принять одно и только одно возм

Числовые характеристики случайных величин.
Закон распределения полностью характеризует случайную величину. Однако он часто неизвестен. В ряде случаев даже удобнее пользоваться числами, которые описывают случайную величину суммарно. Такие чи

Резюме по теме
Экономические показатели, как правило, являются случайными величинами. Случайной величиной называется величина, которая в результате опыта (испытания) может принять одно и только одно возм

Закон равномерной плотности
На практике встречаются непрерывные случайные величины, о которых заранее известно, что их возможные значения лежат в пределах некоторого определенного интервала. Кроме того, известно, что в предел

Показательное распределение.
Показательным (экспоненциальным) называют распределение вероятностей величины Х, которое описывается плотностью

Нормальный закон распределения
Нормальный закон распределения (закон Гаусса) характеризуется плотностью В экономике часто вст

Усеченные законы распределения
Пусть случайная величина Химеет функцию распределения F(x), заданную на всей числовой оси. Выберем на этой оси интересующий нас отрезок [a

Описание системы двух случайных величин.
До сих пор рассматривались случайные величины, каждое возможное значение которых определялось одним числом. Такие величины называются одномерными. Часто результат опыта оп

Условные законы распределения
Для того, чтобы охарактеризовать зависимость между составляющими двумерной случайной величины, вводится понятие условного распределения. Условным законом распределениясост

Числовые характеристики системы двух случайных величин.
Начальным моментом порядка (k,s) системы (X,Y) называется математическое ожидание произведения Xk на Y

Статистическое исследование взаимосвязей.
При изучении различных экономических явлений постоянно сталкиваемся с причинно-следственными связями, когда некоторые явления, именуемые причинами, порождают другое явление, именуемое следствием (р

Исследование взаимосвязей количественных показателей.
Для оценки тесноты связей количественных признаков (измеряемых числами) используются различные показатели. Основными из них являются следующие. 1. Линейный коэффициент корреляции r

Исследование взаимосвязей качественных показателей.
Качественные показатели (признаки) – это показатели, которые нельзя изменить, но с помощью которых можно сравнивать объекты между собой по степени улучшения или ухудшения этого показателя, то есть

Однофакторный дисперсионный анализ.
В дисперсионном анализе исследуется влияние одного или несколь­ких качественных показателей на количественный показатель. В однофакторном дисперсионном анализе на одну количественную перем

Двухфакторный дисперсионный анализ
Двухфакторный дисперсионный анализ с однократными наблюдениями на каждой комбинации уровней определяется следующей расчетной схемой (табл. 5). Таблица 5 Расчетная схема двухфактор

Цели и задачи изучения темы
научиться применять метод наименьших квадратов; рассчитывать коэффициенты в множественной линейной регрессии; анализировать эмпирическое уравнение множественной линейной регрессии; проводить анализ

Расчет коэффициентов в множественной линейной регрессии.
Представим данные наблюдений и соответствующие коэффициенты в матричной форме. Y=(y1,y2,…yn)т B=(b0

Интервальные оценки коэффициентов теоретического уравнения регрессии.
По аналогии с парной регрессией после определения точечных оценок bj коэффициентов βj теоретического уравнения регрессии могут быть рассчитаны ин­тервальные оценки указанных коэффиц

Проверка общего качества уравнения регрессии.
После проверки значимости каждого коэффициента регрессии обычно проверяется общее качество уравнения регрессии. Для этой цели, как и в случае парной регрессии, используется коэффициент детерминации

Анализ статистической значимости коэффициента детерминации.
После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов. Такой анализ осуществляется на основе проверки гип

Проверка равенства двух коэффициентов детерминации.
Другим важным направлением использования статистики Фишера является проверка гипотезы о равенстве нулю не всех коэффициентов регрессии одновременно, а только некоторой части этих коэффициентов. Дан

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги