рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Модели автоматизированных систем управления

Модели автоматизированных систем управления - раздел Философия, МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ Всякая Система Управления С Точки Зрения Ее Функционирования Решает Три Основ...

Всякая система управления с точки зрения ее функционирования решает три основные задачи: сбор и передача информации об управляемом объекте, переработка информации, выдача управляющих воздействий на объект управления.

Различают два основных типа автоматизированных систем управления: системы управления производственными процессами и системы организационно-экономического или административного управления.

Главные отличия этих двух типов – в характере объекта управления и форме передачи информации.

В системах управления технологическими процессами объекты управления – машины, процессы, приборы, устройства, форма передачи информации – различные сигналы (электрические, механические, световые и др.).

В организационно-экономических и административных системах управления объекты управления – человеческие коллективы, форма передачи информации – документы.

Интегрированные системы управления – объединение систем управления предприятием и технологическими процессами. Им присуще организация информационных процессов на предприятии и организация их выполнения. Объект управления – совокупность процессов, свойственных данному предприятию, по преобразованию ресурсов (материалы, оборудование, энергетические, трудовые, финансовые ресурсы) в готовую продукцию.

Особенности таких систем, обуславливающие их сложность: большое число разнородных элементов и высокая степень их взаимосвязи в процессе производства, неопределенность результатов выполнения многих процессов (брак, сбои, несвоевременные поставки, нерегулярность спроса), нестационарность предприятия (постоянное изменение и развитие предприятия. сложность работы с людьми).

Среди систем управления этого типа могут быть выделены системы управления обслуживанием на транспорте (оперативное обслуживание пассажиров, повышение загрузки транспортных средств, контроль операций и др.)., системы контроля (проверка оборудования, диспетчеризация и др.).

Информационные и управляющие системы предприятий и отраслей оперируют интенсивными потоками информации (ввод, переработка, преобразование информации) и структурированы исходя из задач обеспечения информацией и управления.

В рассматриваемых системах функция управления сосредоточена в конкретных устройствах. Впредь будем также различать управляющие устройства и управляемые объекты, работающие под воздействием управляющих сигналов.

В качестве типичной структуры сложной системы, имеющей автоматизированное управление, выберем систему, которая взаимодействует с объектами внешней среды, т. е. получает входные и управляющие сигналы и сама выдает выходные сигналы.

Элементы системы управления в зависимости от их функции в управляющем процессе можно классифицировать следующим образом:

- датчики информации о воздействиях внешней среды,

- датчики информации о состоянии управляемых объектов системы,

- средства передачи информации,

- средства обработки информации и выработки управляющих сигналов,

- исполнительные органы, реализующие управляющие сигналы.

Осведомительная информация о воздействиях внешней среды и состоянии управляемых объектов системы отличается от «истинной» информации за счет представления в другой системе кодирования, недостаточной полноты, наличия аппаратурных помех и ошибок (измерения при помощи датчиков) и т. д. Заметим, что истинная информация не фигурирует внутри системы. Она может быть известна только постороннему наблюдателю, обладающему средствами измерения идеальной точности, способными зафиксировать значения любых величин, связанных с функционированием системы.

Осведомительная информация поступает к средствам передачи информации, которые ее трансформируют (кодирование, декодирование, задержки во времени, внесение дополнительных ошибок и помех и т. д.) и передают средствам обработки информации (центральным или периферийным). Здесь производится первичная сортировка и местная обработка информации и запоминание ее в устройствах памяти системы управления.

Таким образом, средствам обработки информации передается осведомительная информация о состояниях элементов системы и воздействиях внешней среды. Это позволяет провести окончательную обработку информации, решить задачи планирования работы системы и выработать управляющие сигналы для исполнительных органов.

Исполнительные органы изменяют характеристики управляемых объектов в соответствии с сигналами, полученными от средств переработки информации.

Изменение характеристик управляемых объектов обнаруживают и измеряют датчики информации. Эти отклонения вместе с информацией о новых воздействиях внешней среды используются для выработки новых управляющих сигналов и т. д.

В таком виде может быть представлена практически любая из существующих и проектируемых систем управления.

Для математического описания сложной системы с автоматизированным управлением удобно использовать схему агрегатов и агрегативных систем, когда каждый из перечисленных выше элементов (датчики информации, средства передачи и т. д.) описывается в виде агрегата, а система в целом - как агрегативная система. В этом случае исчерпывается и вопрос о методике моделирования системы.

Для частных случаев рассматриваемой системы могут быть построены моделирующие алгоритмы, основанные на частном математическом описании, учитывающем конкретную специфику системы.

Использование частных моделей свидетельствует не только о недостаточной еще популярности унифицированных схем, но и о целесообразности выделения некоторых специальных более узких (чем агрегативные системы) классов сложных систем для углубленного изучения. В этой связи укажем на целесообразность «проблемной ориентации» унифицированных схем, которая позволяет сочетать удобства универсализации с простотой специализации моделей.

Большой интерес представляют автоматизированные системы управления одного класса, которые часто называют информационными системами.

Процессы управления во всех случаях характеризуются наличием информационных потоков; тем не менее название «информационных» получили системы управления, которые связаны с обработкой особенно интенсивных информационных потоков и структура которых приспособлена к обеспечению специальных мероприятий, направленных на оптимальный сбор, хранение, переработку и выдачу больших массивов информации.

На практике, как правило, не включаются в класс информационных системы управления технологическими процессами, работающие в истинном масштабе времени с реальными объектами (управление станками, металлургическими процессами, химическими реакторами и т. д.).

К информационным системам обычно относят системы управления крупными предприятиями в целом, решающие задачи перспективного и текущего планирования, а также задачи оперативного управления производством (скорее не на технологическом, а на организационном уровне). Информационные системы более крупного масштаба могут быть использованы для управления группой предприятий, отраслью или экономикой в целом.

Существуют информационные системы и другого целевого назначения: диагностические (как медицинские, так и технические), библиографические, диспетчерские и т. д.

Обобщенная схема процесса, приводящая к решению задачи планирования, имеет следующий вид.

В отраслевую информационную систему поступают заявки, которые отражают потребность в материально-технических средствах. Эти данные сортируются по видам запрашиваемых номенклатур, суммируются и фиксируются в накопителе системы. Одновременно поступают текущие донесения от потребителей и поставщиков о наличии и движении материально-технических средств, которые также фиксируются в системе.

По имеющимся в системе данным о наличии материально-технических средств производится сопоставление потребностей с имеющимися в наличии материально-техническими средствами на складах, базах, в текущем производстве и у потребителей.

На основе этого сопоставления решается задача о рациональном распределении или перераспределении имеющихся средств, вносятся соответствующие изменения в учетные данные о наличии и движении материально-технических средств, составляется план перевозок, выявляется количество недостающих номенклатур.

На основе информации о производственных предприятиях, функционирующих в сфере данной отрасли, данных об их ресурсах, плане выпуска продукции, снабжении сырьем и т. д. решается задача оптимального распределения заказов по предприятиям.

Решение этой задачи осуществляется с учетом факторов времени, стоимости, размещения и т. д. В некоторых случаях рассматривается вопрос о необходимости подключения дополнительных предприятий или строительстве новых. С учетом запроса потребителей, наличия материально-технических средств и плана заказов производится оптимальное распределение материально-технических средств (план снабжения).

При этом имеется в виду, что информационные задачи, связанные с приемом заявок и донесений, осуществляются в информационной системе непрерывно. Это обеспечивает постоянное обновление информации о состоянии системы и правильное периодическое планирование производства и снабжения.

Особенности моделирования автоматизированных систем управления, определяющие ее громоздкость, обусловлены тремя основными причинами.

В любой сложной системе управление должно способствовать более эффективной работе всех ее элементов. Поэтому для оценки качества управления используются функционалы, зависящие от функционирования не только элементов средств управления, но и управляемых элементов системы. Другими словами, модель, предназначенная для оценки качества управления, должна быть моделью системы в целом, достаточно подробно описывающей функционирование как управляющих, так и управляемых объектов.

Другим обстоятельством, увеличивающим громоздкость моделей автоматизированных систем управления (особенно информационных систем), является сложность моделирования алгоритмов управления (алгоритмов обработки информации и планирования). При моделировании часто приходится воспроизводить реальные алгоритмы планирования и обработки информации алгоритмы полностью, в таком виде, как они фигурируют в реальной системе.

Третье обстоятельство - трудность компактного моделирования информационного поля и информационных процессов.

Эти обстоятельства являются причиной того, что подробные модели сложных автоматизированных систем управления, особенно информационных, представляют собой чрезвычайно сложные алгоритмы.

На практике принимаются специальные меры, связанные с особым построением моделирующих алгоритмов.

Одним из возможных способов упрощения моделирующего алгоритма является замена его набором алгоритмов, включающим подробные модели подсистем и неподробную комплексную модель системы в целом. Это позволяет упростить подалгоритмы, представляющие эти подсистемы в комплексной модели.

Другим приемом упрощения комплексных моделей является применение агрегатного описания автоматизированных систем управления и построение на этой основе моделирующих алгоритмов.

Модели автоматизированных систем управления производственными процессами

Управление производственным процессом основано на использовании системы автоматизированного управления, целью такого управления является улучшение технических и экономических показателей производственного процесса и предприятия в целом.

Основой создания системы управления предприятием является разработка модели управления производственными процессами.

Основные этапы создания АСУ ПП – технико-экономический анализ оценки целесообразности автоматизации и выбор степени автоматизации, моделирование производственного процесса как объекта управления, разработка алгоритмов управления и структуры системы, техническая реализация системы. Между этими этапами существует тесная связь, обусловленная, прежде всего, экономическими соображениями.

Наличие такой связи предполагает многоэтапный циклический характер разработки системы, с постепенным усложнением и уточнением математической модели для каждого из этапов разработки системы управления.

Такое комплексное рассмотрение всех этапов представляет собой системный подход к процедуре проектирования систем управления производственными процессами.

При проведении технико-экономического анализа в качестве критериев оценки качества управления принимаются себестоимость продукции на некотором интервале времени, качество продукции.

Большая размерность входов и выходов, сложная структура и неопределенность преобразований входных потоков, случайные изменения преобразований приводят к необходимости применения имитационного моделирования для оценки качества системы управления.

При выборе структурной схемы и алгоритма управления АСУ ПП существенной является информация о состоянии производственного процесса с учетом его динамических свойств не только в текущий, но и в прошедшие моменты времени.

На этом этапе уже учитываются погрешности измерений, степень достоверности результатов в условиях большого объема информационных потоков, что также требует применения имитационного моделирования.

После выбора структурной схемы АСУ определяется информация, которую можно (и нужно) использовать в управляющем устройстве, задача которого – на основе поступающей информации вырабатывать решения об управляющем воздействии на входе процесса с целью изменения его выходных характеристик. Алгоритм управления предполагает установление соотношений между информацией о состоянии процесса, вводимой в управляющее устройство и управляющим воздействием, поступающим из управляющего устройства на вход процесса.

На этапе технической реализации производится выбор вариантов технических средств, реализующих алгоритм управления.

Модели автоматизированных систем управления предприятием

Предприятие представляется в виде совокупности взаимосвязанных функциональных подсистем и управляющих звеньев, обеспечивающих производственную деятельность.

Подсистемы производственной деятельности обеспечивают выполнение:

- основных производственных процессов по выпуску основной и вспомогательной продукции,

- обслуживающих процессов (ремонтные, энергетические, транспортные службы), процессов развития внедрение новой техники, строительство, интеллектуальные разработки).

Обеспечивающие подсистемы: основные и оборотные фонды (материальные ресурсы многоразового и одноразового использования), трудовые ресурсы (организация труда, зарплата, подготовка кадров), интеллектуальные ресурсы (научные исследования), подсистемы, обеспечивающие финансовую деятельность, маркетинг.

Информационные и управляющие системы таких комплексов оперируют интенсивными потоками информации (ввод, переработка, преобразование) и структурированы исходя из задач информации и управления.

Предприятие рассматривается как динамическая модель системы с управлением, которая объединяет в единой схеме с обратными связями все аспекты функционирования.

Рассматриваются взаимосвязанные потоки: материалов, заказов, денежных средств, оборудования, рабочей силы.

Сущность производственных процессов: преобразование материальных, энергетических, финансовых, трудовых ресурсов в продукт, оцениваемый экономическими показателями (например, себестоимостью). При этом учитываются все возмущения, отклоняющие производственный процесс от заданных условий: возмущающие факторы внешней среды (первичны) и возмущающие факторы, обусловленные внутренними связями.

Возмущающие факторы внешней среды:

- технологические отклонения параметров процессов и средств труда;

- организационные и информационные возмущения, связанные с несовершенством организации производства, планирования, обработки и отображения информации;

- социальные – колебания индивидуальной производительности (заболевания, нарушения дисциплины).

Возмущения, обусловленные внутренними связями:

- организационные и технологические связи: возмущения на входе одного объекта (брак) вызывает возмущение на других объектах;

- возмущения процесса управления: управление одним элементом (устранение возмущения) вызывает возмущение в другом).

Динамическое моделирование предприятия представляет собой изучение деятельности предприятия как информационной системы с обратной связью. На вход производственного процесса поступают ресурсы, на выходе – готовая продукция.

Цель управления - улучшение технических и экономических показателей производственного процесса и предприятия в целом.

Критериями оценки качества управления могут быть себестоимость, качество продукции.

Система управления решает три основные задачи: сбор и передача информации об управляемом объекте, переработка информации, выдача управляющих воздействий на объект управления.

Большая размерность входов и выходов, сложная структура и неопределенность преобразований входных потоков, случайные изменения преобразований приводят к необходимости применения имитационного моделирования для оценки качества системы управления.

Алгоритм управления предполагает установление соотношений между информацией о состоянии процесса, вводимой в управляющее устройство и управляющим воздействием, поступающим из управляющего устройства на вход процесса.

Системы управления производственной деятельностью предприятия основаны на автоматизации информационных процессов предприятия.

Системы управления производством эффективны только при условии создания единой схемы движения информации от первичной до выдачи информации управляющим органам. Для этого необходим единый комплекс взаимоувязанных моделей различных уровней планирования и производства.

Различают два основных типа автоматизированных систем управления: системы организационно-экономического или административного управления и системы управления технологическими процессами.

Главные отличия этих двух типов – в характере объекта управления и форме передачи информации.

В организационно-экономических и административных системах управления объекты управления – человеческие коллективы, форма передачи информации – документы.

В системах управления технологическими процессами объекты управления – машины, процессы, приборы, устройства, форма передачи информации – различные сигналы (электрические, механические, световые и др.).

Интегрированные системы управления – объединение систем управления предприятием и технологическими процессами. Им присуще организация информационных процессов на предприятии и организация их выполнения.

Объект управления – совокупность процессов, свойственных данному предприятию, по преобразованию ресурсов (материалы, оборудование, энергетические, трудовые, финансовые ресурсы) в готовую продукцию.

Особенности таких систем, обуславливающие их сложность: большое число разнородных элементов и высокая степень их взаимосвязи в процессе производства, неопределенность результатов выполнения многих процессов (брак, сбои, несвоевременные поставки, нерегулярность спроса), нестационарность предприятия (постоянное изменение и развитие предприятия, сложность работы с людьми).

Среди систем управления этого типа могут быть выделены системы управления обслуживанием на транспорте (оперативное обслуживание пассажиров, повышение загрузки транспортных средств, контроль операций и др.), системы контроля (проверка оборудования, диспетчеризация и др.).

Информационные и управляющие системы предприятий и отраслей оперируют интенсивными потоками информации (ввод, переработка, преобразование информации) и структурированы исходя из задач обеспечения информацией и управления.

Особенности моделирования автоматизированных систем управления предприятием:

- модель для оценки качества управления должна быть моделью системы в целом, описывающей функционирование управляющих и управляемых объектов;

- сложность моделирования алгоритмов управления (обработки информации) – необходимо воспроизводить реальные алгоритмы планирования и обработки информации полностью, в таком виде, в каком они фигурируют в реальной системе;

- трудность компактного моделирования информационного поля и информационных процессов.

Предприятие представляется как комплекс сетей каналов информации на основе пунктов контроля реальных процессов (производство, сбыт, строительство, наем рабочей силы).

Каждому пункту деятельности предприятия соответствует пункт принятия решений, основанных на информации из внутренних и внешних источников. Принятое решение управляет действием и является источником новой информации.

В каждом из трех элементов (решение – действие – информация) имеют место запаздывания (для выполнения каждого из них необходимо время), выходы их элементов могут быть неадекватны входу (усиления или ослабления), могут быть искажения или шумы. Любая точка системы может быть чувствительнее к одним видам возмущений по сравнению с другими.

Решения принимаются на многих уровнях – системы управления предприятиями имеют иерархическую многомодульную структуру.

Основные этапы создания АСУ:

- технико-экономический анализ и выбор степени автоматизации исходя их целей управления (улучшение технико-экономических показателей производственного процесса);

- моделирование производственного процесса как объекта управления;

- разработка алгоритмов управления (принятия решений) и структуры системы;

- техническая реализация системы.

Между этапами существует связь, что обуславливает циклический характер разработки системы с постепенным усложнением и уточнением модели. Такое комплексное рассмотрение всех этапов представляет собой системный подход к проектированию АСУ.

Большая размерность входов и выходов, сложная структура и неопределенность преобразования входных потоков приводят к необходимости применения имитационного моделирования для оценки качества системы управления.

 

8 МОДЕЛИРОВАНИЕ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

8.1 Модели систем массового обслуживания

Модели систем массового обслуживания (СМО) разработаны для описания широко распространенных сложных систем, назначением которых является обслуживание в широком понимании, причем, массовое. Такие системы реализуют многократное выполнение однотипных задач.

Широкое понимание массового обслуживания включает в себя все формы обслуживания во многих областях экономики, финансов, производства, в службе связи, в транспорте, в военном деле, в быту (обслуживание продавцами покупателей, продажа билетов в кассах, ремонтные работы), медицине (на дому, в поликлиниках), и т.п.

Примеры СМО: банки различных типов (коммерческие, инвестиционные, ипотечные, инновационные, сберегательные), страховые организации (государственные, акционерные общества, компании, фирмы, ассоциации, кооперативы), налоговые инспекции, различные системы связи (в том числе телефонные станции), погрузочно-разгрузочные комплексы (порты, товарные станции), автозаправочные станции, различные предприятия и организации сферы обслуживания (магазины, справочные бюро, парикмахерские, билетные кассы, пункты по обмену валюты, ремонтные мастерские, больницы).

Такие системы как компьютерные сети, системы сбора, хранения и обработки информации, транспортные системы, автоматизированные производственные участки, поточные линии, различные военные системы, в частности системы противовоздушной или противоракетной обороны также могут рассматриваться как своеобразные СМО.

В основе формализации сложной системы как системы массового обслуживания – выделение обслуживающей системы, к которой в случайные моменты времени поступают заявки на обслуживание. При этом определяются три основные понятия: кого (что) обслуживают, кто (что) обслуживает, как (по каким правилам) обслуживает.

Основные элементы систем массового обслуживания.

Анализ и прогнозирование поведения сложных объектов и процессов выполняется методами теории массового обслуживания.

Основные компоненты системы обслуживания: входной поток, обслуживающая система, выходной поток.

Схематическая структура системы массового обслуживания

Система массового обслуживания представляет собой физическую систему дискретного типа с конечным (или счетным – можно пронумеровать) множеством состояний, система из одного состояния в другое переходит скачком, в момент, когда происходит какое либо событие (приход новой заявки, освобождение канала, уход заявки из очереди и т.д.). В любой момент времени система может быть в одном из этих состояний.

Во всякой СМО можно выделить следующие основные элементы:

- входящий поток заявок;

- очередь;

- каналы обслуживания;

- выходящий поток обслуженных заявок.

Примеры: обслуживание большого количества однотипных требований (заявок, запросов на обслуживание) в телефонии, в системе продажи билетов. Заправочная станция: заявка на обслуживание – прибытие автомобиля (бензоколонки – обслуживающие каналы). Аэропорт: прибытие самолета (заявка), посадочные полосы (обслуживающие каналы).

Обслуживающая система имеет линии (приборы, каналы), выполняющие совокупность операций обслуживания.

Обслуживающая система – совокупность очередей и линий обслуживания. Каждая заявка должна поступить на одну из обслуживающих линий, чтобы пройти соответствующее обслуживание. Так как в общем случае продолжительность обслуживания является случайной величиной, то заявкам приходится ожидать, пока не освободится обслуживающая линия. В этом случае они находятся в накопителе, образуя одну или несколько очередей.

Механизм обслуживания (характеристики процесса обслуживания): множество обслуживающих приборов, количество одновременно обслуживаемых требований, продолжительность и тип обслуживания (последовательное или параллельное функционирование приборов), число каналов, число фаз обслуживания.

Каждый канал одновременно может обслуживать только одну заявку и каждая находящаяся под обслуживанием заявка обслуживается только одним каналом.

Многоканальные СМО могут состоять из однородных каналов, либо из разнородных, отличающихся длительностью обслуживания одной заявки. Практически время обслуживания каналом одной заявки Тоб является непрерывной случайной величиной. Однако при условии абсолютной однородности поступающих заявок и каналов время обслуживания может быть и величиной постоянной (Тоб = const).

Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, парикмахеры, продавцы), линии связи, автомашины, краны, ремонтные бригады, железнодорожные пути, бензоколонки и т.д.

Возможные варианты: ограниченная вместимость очереди, перемещение либо заявок к приборам, либо приборов к заявкам, непрерывно работающие системы (даже при отсутствии заявок), обслуживание заявок фиксированными порциями, параллельная или последовательная работа приборов, число обслуживающих приборов зависит от состояния системы, приборы функционируют по согласованному регламенту, приборы реализуют специфические и взаимно незаменимые процедуры и т.д.

Характеристики потока

На практике моменты поступления заявок случайны, случайна и длительность обслуживания заявки. В связи с этим процесс работы системы протекает нерегулярно: в потоке заявок образуются местные сгущения и разрежения. Сгущения могут привести либо к отказам в обслуживании, либо к образованию очередей.

На эти случайности, связанные с неоднородностью потока заявок, накладываются еще случайности, связанные с задержками обслуживания отдельных заявок. В силу случайного характера моментов поступления заявок процесс их обслуживания представляет собой случайный процесс. Построение математической модели такого процесса и изучение ее даст возможность оценить пропускную способность системы и дать рекомендации по рациональной организации обслуживания.

Такие модели используются при решении большого класса задач: проектирование систем обслуживания, автоматизация производства (ритмичность поступления деталей – потоки заявок к обслуживанию нарушается случайным образом), организация транспорта, сравнительная оценка эффективности систем различной структуры (среднее время простоя, среднее время безотказной работы и др.).

Потоком событий (в данном случае заявок) называют последовательность событий, наступающих одно за другим в какие-то заранее неизвестные, случайные моменты времени . Вид и параметры закона распределения входящего потока определяется характером физических процессов, протекающих в моделируемом объекте. Случайный характер потока заявок и длительности их обслуживания порождает в СМО случайный процесс.

Поэтому для решения задач оценки эффективности систем массового обслуживания необходимо этот случайный процесс изучить, т.е. построить и проанализировать его математическую модель.

Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы большей частью не регулярно, а в случайные моменты времени. Обслуживание заявок, в общем случае, также длится не постоянное, заранее известное время, а случайное время, которое зависит от многих случайных, порой неизвестных причин. После обслуживания заявки канал освобождается и готов к приему следующей заявки.

Случайный характер потока заявок и времени их обслуживания приводит к неравномерной загруженности СМО: в некоторые промежутки времени на входе СМО могут скапливаться не обслуженные заявки, что приводит к перегрузке СМО, в некоторые же другие интервалы времени при свободных каналах на входе СМО заявок не будет, что приводит к недогрузке СМО, т.е. к простаиванию ее каналов.

Заявки, скапливающиеся на входе СМО, либо "становятся" в очередь (т.е. образуют список объектов подлежащих обработке), либо по какой-то причине невозможности дальнейшего пребывания в очереди покидают СМО не обслуженными. Закон, определяющий порядок обслуживания входных заявок, называется дисциплиной очереди.

Поток – последовательность событий (заявок на обслуживание - требований) с заданным чередованием моментов их появления во времени.

Примеры:

- поток вызовов на телефонной станции;

- поток включений приборов в бытовой электросети;

- поток грузовых составов, поступающих на железнодорожную станцию;

- поток неисправностей (сбоев) вычислительной машины;

- поток выстрелов, направляемых на цель, и т. д.

Входной поток – поток заявок на обслуживание системой.

Основные показатели описания входного потока: характеристики источника заявок, тип заявок, длина интервалов времени между поступлениями требований. Возможные варианты: групповые поступления заявок, ожидание вне системы, поступление заявок согласованными потоками, зависимость входного потока от состояния системы, поступления по графику, но с опозданиями и др. Поступление заявок зависит от внешних обстоятельств, и этот процесс описывается через случайные величины.

Входной поток заявок однозначно задается последовательностью моментов времени поступления заявок в систему t1, t2, . . . , tk, . . ..

Чтобы описать случайный поток однородных событий как случайный процесс достаточно задать закон распределения, характеризующий последовательность случайных величин t1, t2, . . . tk, Обычно вместо t1, t2, . . . tk, . . задают случайные величины ξ1, ξ2, . . . , ξк, . . ., являющиеся длинами интервалов времени между последовательными моментами tj:

t1 = ξ1,

t2 = ξ1 + ξ2 ,

. . . . . . . .

tк = ξ1 + ξ2 +. . . ξк..

Для задания входного потока достаточно получить последовательность случайных величин ξ1, ξ2, . . , ξi, . . . с заданным законом распределения.

Выходной поток – поток заявок, покидающих систему.

Источник – первопричина возникновения заявок независимо от их физической природы.

Рассмотрение процесса обслуживания отдельной заявки представляет лишь ограниченный интерес. Заявки образуют поток, последовательность поступления.

Случайный процесс, протекающий в системе массового обслуживания, состоит в том, что система в случайные моменты времени переходит из одного состояния в другое: меняется число занятых каналов, число заявок в очереди.

Случайные процессы со счетным множеством состояний бывают двух типов: с дискретным временем (переход из состояния в состояние только в определенные, разделенные конечными интервалами, моменты времени) и с непрерывным временем (переход из состояния в состояние может осуществляться в любой момент времени).

В связи со случайностью потока заявок в системах массового обслуживания рассматриваются только процессы с непрерывным временем.

Для того чтобы описать случайный процесс в дискретной системе с непрерывным временем, необходимо проанализировать причины, вызывающие переход системы из состояние в состояние.

Основной фактор, определяющий протекающие в системе массового обслуживания процессы является поток заявок.

При рассмотрении процессов, протекающих в системе с дискретными состояниями и непрерывным временем, часто целесообразно представлять процесс так, как будто изменения состояний системы происходят под действием каких-то потоков событий (поток вызовов, поток неисправностей, поток заявок на обслуживание, поток посетителей и т. д.).

Если с точки зрения обслуживания все заявки потока оказываются равноправными и играет роль лишь сам факт наступления события, состоящего в появлении заявки, то такие потоки называются потоками однородных событий.

Для потока однородных событий получены аналитические решения оценки качества обслуживания.

Каждое событие однородного потока характеризуется моментом времени tj, в который оно наступает. Поток событий, отличающихся только моментами появления, можно представить в виде последовательности точек t1, t2, . . . tj, . .

Если однородный поток событий является детерминированным, то последовательность событий задается перечислением моментов времени наступления события или зависимостью, позволяющее определить текущее значение tj по предыдущим.

Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени.

Для решения многих прикладных задач можно ограничиваться частными случаями потоков.

Правило формирования очереди (дисциплина очереди) – алгоритм постановки заявок в очередь – правила формирования очереди, в соответствии с которыми обслуживающий механизм принимает заявку к обслуживанию.

Три основных типа правил: бесприоритетное, приоритетное обслуживание, случайный отбор заявок. Возможные варианты: циклическое – по одному требованию из различных источников, возможность отказов от ожидания, выбытие требований из очереди по истечении определенного времени, зависимость приоритетов от времени или от длительности прогнозируемого обслуживания (первой обслуживается заявка, требующая наименьших затрат времени), от продолжительности ожидания, от внешних причин (дополнительной оплаты) и др.

Простейший поток событий (поток Пуассона) удовлетворяет трем условиям: он стационарен, ординарен и не имеет последействий.

Стационарный поток событий – вероятностные характеристики не зависят от времени - вероятность наступления заданного числа событий в течение интервала времени фиксированной длины зависит только от продолжительности этого интервала, но не зависит от его расположения на временной оси.

Стационарность потока означает его однородность по времени; вероятностные характеристики такого потока не меняются в зависимости от времени.

Для стационарного потока характерна постоянная плотность потока λ - среднее число событий в единицу времени. Или: вероятность рк (t, t0) появления к событий за промежуток времени (t0, t0 +t) не зависит от t0, а зависит только от t и к.

Это не значит, что фактическое число событий, появляющихся в единицу времени, постоянно, поток может иметь местные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный участок времени, остается постоянным для всего рассматриваемого периода.

На практике все процессы стационарны только в определенные промежутки времени. Например, поток заявок на телефонной станции в течение суток не может считаться стационарным, но в течение определенного промежутка времени – может.

Ординарный поток – вероятность появления двух и более событий в течение элементарного интервала времени ∆t есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале.

Условие ординарности означает, что заявки поступают в систему поодиночке, а не парами, тройками и т.д.

Поток отказов элементов технических систем (восстанавливаемых элементов), например электрических сетей, можно представить как ординарный поток. Поток обстрелов, которому подвергается воздушная цель в зоне действия ракетной зенитной ПВО, является ординарным, если стрельба ведется одиночными ракетами, и неординарным, если стрельба ведется одновременно двумя или несколькими ракетами.

Если в неординарном потоке события происходят только парами, только тройками и т. д., то можно его рассматривать как ординарный «поток пар», «поток троек» и т. д. Если число событий, образующих «пакет» (группу одновременно приходящих событий), случайно, то тогда приходится наряду с потоком пакетов рассматривать случайную величину X — число событий в пакете, и математическая модель потока становится более сложной.

Поток без последействия: заявки поступают независимо друг от друга – случайные величины являются независимыми, т.е. отсутствует вероятностная зависимость последующего течения событий потока от предыдущего – для любых неперекрывающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.

Пример: последействие отсутствует для потока пассажиров в метро, поскольку отсутствует зависимость между причинами, вызвавшими приход каждого из пассажиров на станцию. Но как только эта зависимость появляется, условие отсутствия последействия нарушается. Например, поток пассажиров, покидающих станцию метро, уже не обладает свойством без последействия, так моменты выхода для пассажиров, прибывших одним поездом, зависимы между собой.

Если такая зависимость появляется, условие отсутствия последействия оказывается нарушенным.

Пример: поток грузовых поездов, идущих по железнодорожной ветке. Если по условиям безопасности они не могут следовать один за другим чаще, чем через интервал времени, то между событиями в потоке имеется зависимость, и условие отсутствия последействия нарушается. Однако, если интервалмал по сравнению со средним интервалом между поездами, то такое нарушение несущественно.

Чаще всего выходные потоки заявок имеют последействие, даже если входной его не имеет. Последействие выходного потока необходимо учитывать, когда он является входным для другой системы (многофазное обслуживание, когда одна и та же заявка постепенно переходит из системы в систему).

При суперпозиции (взаимном наложении) достаточно большого числа потоков, обладающих последействием (лишь бы они были стационарны и ординарны), образуется суммарный поток, который можно считать простейшим, и тем точнее, чем большее число потоков суммируется. Дополнительно требуется, чтобы складываемые потоки были сравнимы по интенсивности, т. е., чтобы среди них не было, скажем, одного, превосходящего по интенсивности сумму всех остальных.

Если поток событий не имеет последействия, ординарен, но не стационарен, он называется нестационарным пуассоновским потоком. В таком потоке интенсивность λ (среднее число событий в единицу времени) зависит от времени: λ = λ(t), тогда как для простейшего потока λ=const.

Пуассоновский поток событий (как стационарный, так и нестационарный) тесно связан с известным распределением Пуассона — число событий потока, попадающих на любой участок, распределено по закону Пуассона.

Для простейшего потока (потока Пуассона) вероятность Pk (t) наступления k событий за интервал времени длины t выражается законом распределения Пуассона (вероятность того, что за время t произойдет к событий) - поэтому часто простейший поток называют пуассоновским потоком:

с математическим ожиданием a = λt.

Здесь λ – плотность потока (количество заявок в единицу времени).

Введем состояние системы следующим образом: система находится в состоянии Еs в момент времени t, если к этому моменту в систему поступило s заявок. Вероятность того, что в момент времени t + t система останется в том же состоянии, т.е. что за интервал времени ∆t в систему не поступит ни одной заявки:

S = 0, 1, 2, …,

разлагая в ряд, имеем wss = 1 – λdt.

Вероятность поступления в систему хотя бы одной заявки wss+1 = λdt.

Такой закон распределения называется показательным (или экспоненциальным). Величинаназывается параметром показательного закона. Ввиду стационарности потока полученные соотношения имеют то же значение и для любого другого момента времени.

Поскольку поток простейший (без последействия), наличие события в начале интервала t не влияет на появление события в дальнейшем. Это важное свойство показательного закона.

Матрица переходов для простейшего потока и соответствующий граф

Матрица переходов

  Е0 Е1 Е2 Е3 . . .
Е0 1 – λdt λdt     . . .
Е1   1 – λdt λdt   . . .
Е2     1 – λdt λdt . . .
Е3       1 – λdt . . .
. . . . . . . . . . . . . . . . .

 

     

Кроме характеристик потока заявок, режим работы системы зависит еще и от характеристик производительности самой системы: числа каналов и быстродействия каждого канала (времени обслуживания одной заявки).

Время обслуживания одной заявки может быть величиной как случайной, так и детерминированной, меняться от заявки к заявке. В общем случае – случайная величина.

Пусть система массового обслуживания состоит из n каналов, способных одновременно обслуживать заявки. В любой момент времени канал находится в одном из двух состояний – свободен или занят.

В некоторый момент времени t в систему поступает заявка. Если в этот момент времени имеются свободные каналы, заявка принимается к обслуживанию. В противном случае, т.е. когда все каналы заняты, заявка остается в систем в течение некоторого времени (τпр – время пребывания заявки в системе). За этот интервал времени она должна быть принята к обслуживанию, в противном случае считается потерянной – получает отказ.

Система с отказами при τпр = 0, система с ожиданием τпр = ∞, система с ограниченным ожиданием при 0 < τпр < ∞.

Заявка, принятая к обслуживанию занимает один из каналов в системе в течение времени обслуживания τз (время занятости канала). По окончании этого времени канал может приступить к обслуживанию новой заявки.

Обычно величины τпр и τз считаются случайными величинами с заданными законами (или совместным законом) распределения. Одна из них или обе могут быть фиксированы.

Правила занятия каналов заявками и принятия заявок к обслуживанию в случае очереди: в порядке очереди, по минимальному времени получения отказа, в случайном порядке.

Чаще всего встречается показательный закон обслуживания.

Примеры. Совокупность операций в почтовом отделении. В одном окне – продажа марок (часто и мало времени на обслуживание), прием заказных писем (реже и больше времени на обслуживание) и прием переводов (еще реже и много времени на обслуживание).

Отыскание неисправностей в телевизоре – направленный перебор (метод проб и ошибок). Если пробы независимы, то поток простейший. Это случай, когда обслуживание сводится к последовательности попыток, каждая из которых может закончиться положительным результатом (обстрел цели).

Случайный процесс, протекающий в СМО, называетсямарковским (или процессам без последействия, или процессом без памяти), если вероятность любого состояния СМО в будущем зависит только от ее состояния в настоящем и не зависит от ее состояний в прошлом.

Чтобы случайный процесс был марковским, необходимо и достаточно, чтобы все потоки событий, под воздействием которых происходят переходы системы из состояния в состояние, были пуассоновскими. Поток событий, обладающий свойствами отсутствия последействия (для любых двух непересекающихся промежутков времени, число событий, наступающих за один из них, не зависит от числа событий, наступающий за другой) и ординарностью (вероятность наступления за элементарный - малый промежуток времени более одного события пренебрежимо мала по сравнению с вероятностью наступления за этот промежуток времени одного события), называется пуассоновским.

В СМО потоками событий являются потоки заявок, потоки "обслуживании" заявок и т. д. Если СМО такова, что хотя бы один из ее потоков не является пуассоновским, то характеристики ее эффективности все же могут быть приближенно оценены с помощью марковской теории массового обслуживания. При этом, чем сложнее СМО, чем больше в ней каналов обслуживания — тем точнее оказываются приближенные формулы, полученные при предположении выполнимости в СМО марковских условий.

Под марковской СМО будем понимать систему, в которой все потоки событий, переводящие ее из состояния в состояние, пуассоновские. Если хотя бы один из потоков не является пуассоновским, то СМО будет называться немарковской.

Например, в системах со строго выполняющимся расписанием, с ленточным конвейером и им подобным поток входящих заявок является регулярным и, следовательно, не является пуассоновским.

В пуассоновском стационарном (простейшем потоке) случайная величина Т, представляющая собой промежуток времени между любыми двумя соседними событиями, распределена по показательному закону

¦(t)=le-li, (1)

где l называется параметром этого закона распределения и представляет собой интенсивность простейшего потока (интенсивностью или средней плотностью потока называется среднее число событий в единицу времени).

Если вывод системы S из какого-то ее состояния si происходит под воздействием нескольких простейших потоков, то непрерывная случайная величина T, представляющая собой время пребывания системы (подряд) в данном состоянии si, также распределена по показательному закону, в котором l - суммарная интенсивность всех потоков, выводящих систему S из данного состояния si.

Классификация СМО

Модели СМО классифицируются по различным признакам.

По типу случайного процесса – марковский или немарковский.

По характеру источника заявок различают системы с конечным или бесконечным числом заявок. В случае конечного, обычно постоянного числа заявок, заявки после завершения обслуживания возвращаются в источник, где они пребывают в течение некоторого времени, затем вновь поступают в систему. Во втором случае источник генерирует бесконечное число заявок, и работа источника не зависит от работы обслуживающей системы. Системы с конечным числом заявок называются замкнутыми, с бесконечным – разомкнутыми.

По отсутствию или наличию возможности ожиданиясистемы с отказами (заявка, поступившая в момент, когда все обслуживающие приборы заняты, получает отказ, покидает систему и в дальнейшем процессе обслуживания не участвует) и системы с ожиданием (если все линии обслуживания заняты, заявка становится в очередь и ожидает, пока одна из линий не освободится).

Системы с ожиданием делятся на системы с неограниченным ожиданием (любая заявка рано или поздно будет обслужена) и системы с ограниченным ожиданием (накладываются ограничения на длину очереди, время пребывания в очереди, общее время пребывания в системе).

Для систем с отказами показателем качества системы обслуживания обычно считаются вероятность отказа, среднее число отказов за данный интервал времени и т.д. Для систем с ожиданием показателями качества обслуживания могут быть среднее время ожидания заявки, средняя длина очереди и т.д.

По числу линий обслуживания – одноканальные (одна линия) и многоканальные (несколько линий).

По правилу формирования очереди – с общей очередью (общий накопитель) и несколькими очередями (накопитель разделен на зоны).

Для общей очереди ограниченной длины возможны три основных алгоритма постановки заявок в очередь:

- "по кольцу" – последовательно в порядке поступления, при достижении ограничения запись продолжается с первой позиции,

- с поиском свободных мест – при отсутствии свободных мест заявка получает отказ,

- приоритетные правила – заявки неоднородны по значимости, при отсутствии свободного места в очереди, заявка поступает на место заявки с меньшим приоритетом.

По правилу обслуживания: бесприоритетное – "первым пришел – первым ушел", приоритетное - в соответствии с номером приоритета - "последним пришел – первым ушел", случайный отбор заявок.

По числу каналов СМО подразделяют на одноканальные (когда имеется один канал) и многоканальные.

По дисциплине обслуживания СМО подразделяют на три класса:

СМО с отказами (нулевым ожиданием или явными потерями), в которых заявка, поступившая на вход СМО в момент, когда все каналы заняты, получает "отказ" и покидает СМО ("пропадает"). Чтобы эта заявка все же была обслужена, она должна снова поступить на вход СМО и рассматриваться при этом как заявка, поступившая впервые. Примером СМО с отказами может служить работа АТС: если набранный телефонный номер (заявка, поступившая на вход) занят, то заявка получает отказ, и, чтобы дозвониться по этому номеру, следует его набрать еще раз (заявка поступает на вход как новая),

СМО с ожиданием (неограниченным ожиданием или очередью). В таких системах заявка, поступившая в момент занятости всех каналов, становится в очередь и ожидает освобождения канала, который примет ее к обслуживанию. Каждая заявка, поступившая на вход, в конце концов будет обслужена. Такие СМО часто встречаются в торговле, в сфере бытового и медицинского обслуживания, на предприятиях (например, обслуживание станков бригадой работников).

СМО смешанного типа (ограниченным ожиданием). Это такие системы, в которых на пребывание заявки в очереди накладываются некоторые ограничения.

Эти ограничения могут накладываться на длину очереди, т.е. максимально возможное число заявок, которые одновременно могут находиться в очереди.

В качестве примера такой системы можно привести мастерскую по ремонту автомобилей, имеющую ограниченную по размерам стоянку для неисправных машин, ожидающих ремонта.

Ограничения ожидания могут касаться времени пребывания заявки в очереди, по истечению которого она выходит из очереди и покидает систему, либо касаться общего времени пребывания заявки в СМО (т.е. суммарного времени пребывания заявки в очереди и под обслуживанием).

В СМО с ожиданием и в СМО смешанного типа применяются различные схемы обслуживания заявок из очереди. Обслуживание может быть упорядоченным, когда заявки из очереди обслуживаются в порядке их поступления в систему, и неупорядоченным, при котором заявки из очереди обслуживаются в случайном порядке. Иногда применяется обслуживание с приоритетом, когда некоторые заявки из очереди считаются приоритетными и поэтому обслуживаются в первую очередь.

По ограничению потока заявок СМО делятся на замкнутые и открытые (разомкнутые).

Если поток заявок ограничен и заявки, покинувшие систему, могут в нее возвращаться, то СМО является замкнутой, в противном случае — открытой. Классическим примером замкнутой СМО служит работа группы наладчиков в цеху. Станки являются источниками заявок на обслуживание, и их количество ограничено, наладчики — каналы обслуживания. После проведения ремонтных работ вышедший из строя станок снова становится источником заявок на обслуживание.

По количеству этапов обслуживания СМО делятся на однофазные и многофазные системы. Если каналы СМО однородны, т.е. выполняют одну и ту же операцию обслуживания, то такие СМО называются однофазными. Если каналы обслуживания расположены последовательно и они неоднородны, так как выполняют различные операции обслуживания, то СМО называется многофазной (заявка обслуживается несколькими устройствами). Примером работы многофазной СМО может служить

Примеры: обслуживание покупателя в магазине однофазное и многофазное. Обслуживание автомобилей на станции техобслуживания (мойка, диагностирование и т.д.). Технологический процесс обработки детали (определенная очередность операций).

Оценка эффективности СМО

Каждая СМО в зависимости от своих параметров: характера потока заявок, числа каналов обслуживания и их производительности, а также от правил организации работы обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

Необходимо оценить эффективность обслуживания потока заявок системой заданной структуры (количество линий обслуживания, производительность каждой линии).

Цель - выработка рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок для обеспечения высокой эффективности функционирования СМО.

Для достижения этой цели устанавливаются зависимости эффективности функционирования СМО от ее организации (параметров): характера потока заявок, числа каналов и их производительности и правил работы СМО.

В качестве критерия эффективности системы обслуживания могут быть использованы различные величины и функции, например, вероятность обслуживания каждой из поступающих заявок, средняя доля обслуженных заявок, среднее время ожидания обслуживания, среднее время простоя каждого из каналов и системы в целом, пропускная способность системы и т.д. Численное значение каждого из этих требований в той или иной степени характеризует эффективность системы по удовлетворению потока поступающих требований – пропускную способность системы. Пропускная способность зависит не только от параметров системы, но и от характера потока заявок.

В качестве характеристик эффективности функционирования СМО можно выбрать три основные группы (обычно средних) показателей:

Показатели эффективности использования СМО:

- пропускная способность СМО - отношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу поступивших заявок за это же время;

- средняя продолжительность периода занятости СМО;

- коэффициент использования СМО - средняя доля времени, в течение которого СМО занята обслуживанием заявок, и т.п.

Показатели качества обслуживания заявок:

- среднее время ожидания заявки в очереди;

-среднее время пребывания заявки в СМО;

-вероятность отказа заявке в обслуживании безожидания;

-вероятность того, что поступившая заявка немедленно будет принята к обслуживанию;

- среднее число заявок, находящихся в очереди;

- среднее число заявок, находящихся в СМО, и т.п.

Аналитические и статистические модели

Известны аналитические соотношения теории массового обслуживания, связывающие характеристики потока заявок и параметры системы с показателями качества обслуживания для простейшего (пуассоновского) потока, к которому могут быть сведены многие практические задачи.

Разработанные аналитические методы обычно относятся к моментам времени, достаточно удаленным от начала процесса – когда уже наступил стационарный режим.

Обобщение математической модели массового обслуживания идет по следующим направлениям.

Рассматривался однородный поток заявок, но на практике более распространены задачи, требующие учета имеющейся неоднородности заявок в потоке. Особенно это существенно тогда, когда параметры процесса обслуживания (например, его длительность, качество и др.) зависят не только от времени поступления заявки, но и от ее характеристик.

Примеры. При обработке детали на станке время обработки зависит от ее сложности, размеров, характеристик материала и т.п. При обработке потока самолетов в аэропорт помимо времени прибытия учитывается тип самолета, скорость, высота, курс, длина пробега и т.п.

В случае неоднородных заявок (для их описания необходимо привлекать другие параметры, кроме момента поступления в систему) применяется обобщенное понятие потока: каждая j-ая заявка характеризуется моментом поступления tj и n параметрами а1, а2, . . . , аn.

Другими словами, каждая заявка представляет собой (n + 1)-мерный вектор вида vj = v (tj, α1j, α2j, . . . , αnj) в пространстве параметров t, α1, α2, . . . , αn.

Часто приходится учитывать случайные отклонения от нормы не только моментов поступления, но и случайный характер параметров заявок (размеров, температуры, скорости, твердости, координат и др.). Поэтому в общем случае заявки описываются случайными векторами, и мы приходим к необходимости рассматривать случайные потоки векторов.

В рассмотренных системах параметры системы обслуживания предполагались независимыми от потока заявок.

При неоднородном потоке заявок параметры системы обслуживания (число каналов, характеристики закона распределения времен занятости канала, например, среднее время обслуживания) реально могут зависеть от характеристик потока заявок. Если считать поток заявок потоком случайных векторов, то параметры системы обслуживания могут быть функциями tj и величин α1j, α2j, . . . , αnj Например, длительность обработки детали может определяться ее размерами, твердостью материала, температурой и др.

Аналитические математические модели могут быть построены для каждого типа системы с простейшим потоком заявок (с ожиданием, без ожидания и др.).

Аналитические методы анализа систем массового обслуживания пригодны для получения качественных характеристик и практически могут использоваться для сравнительно простых случаев.

Реальные входные потоки по своим свойствам далеко не всегда соответствуют простейшему потоку, время обслуживания часто распределяется не по показательному закону, дисциплина обслуживания может быть достаточно сложной.

На практике приходится сталкиваться с многофазными системами. Системы массового обслуживания, составляющие различные фазы обслуживания, могут быть неодинаковыми, и характер операций, обслуживания на различных фазах, может быть различным. На последующих фазах могут появиться заявки, которые не поступали на предыдущие фазы, может оказаться, что обслуживание, относящееся к последующей фазе, начинается еще до окончания обслуживания еще на предыдущей фазе и т.д.

Порядок использования свободных линий (каналов) и порядок выбора заявок из очереди может не устанавливаться заранее, и в процессе обслуживания заявок изменяться и не зависеть от характеристик потока заявок.

В реальных процессах, которые могут быть представлены как системы массового обслуживания (например, в процессах с управлением), может содержаться элемент, способный определять оптимальный порядок обслуживания.

Для математического описания процессов с управлением удобно использовать такие системы массового обслуживания, которые снабжены специальным алгоритмом, позволяющим по известным данным о заявках и состояниях обслуживающих средств определить порядок обслуживания, и, возможно, целесообразное изменение структуры самой системы. Пример такой системы массового обслуживания – моделирование дискретных производственных процессов.

Для анализа стохастических систем, когда аналитическое описание процесса получить затруднительно, используется метод статистического моделирования (имитационного моделирования).

Вместо того, чтобы описывать случайное явление аналитически, производится его моделирование с помощью некоторой процедуры, дающей случайный результат. С помощью специальных моделирующих алгоритмов формируются реализации потока заявок с заданным законом распределения интервалов между заявками. Здесь самое главное – определить вид закона распределения.

8.2 Модели производственных процессов

Производственный комплекс для поточного выпуска штучных изделий (автомобилей, самолетов, труб, часов и т.д.) формализуется как дискретный производственный процесс. К производственным комплексам дискретного типа можно отнести крупные морские, и авиационные порты, железнодорожные станции с оборудованием погрузки-разгрузки, технического обслуживания и др.

Производственный комплекс состоит из большого количества станков, обеспечивающих выполнение технологических операций (обработка деталей, сборка узлов, агрегатов, изделий). Технологические операции объединяются в техно

– Конец работы –

Эта тема принадлежит разделу:

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ

Системность... Системные идеи лежат в основе деятельности человечества с начала его... Необходимость решения специфических проблем связанных с возникновением и развитием больших и сложных систем вызвала...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Модели автоматизированных систем управления

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение понятия системы
Определение понятия "модель системы" предполагает, прежде всего, определение понятия "система". Определение понятия системы – это тоже модель (лингвистическая

Внешняя среда
Внешняя среда -набор существующих в пространстве и во времени факторов, которые оказывают действие на систему и которые испытывают влияние со стороны системы. Объекты,

Функции системы
Функции системы –действия компонентов системы (преобразования входов в выходы), необходимые для выполнения системой своих задач, обусловленных целью системы (интегративным свой

Системный подход
В основе системного подхода лежит стремление изучить объект (систему, явление, процесс) как нечто целостное и организованное, во всей полноте и многообразии связей – ориентирует на рассмотре

Развитие искусственной системы и ее жизненный цикл
В системе как элементе системы более высокого уровня могут накапливаться противоречия (проблемы), для разрешения которых система должна иметь новые функциональные свойства –

Целевой характер моделирования
Система может иметь практически необозримое количество сущностей (свойств), создание модели всей системы нереально – не существует модели «вообще». Таким образом, моделирование имеет це

Процесс моделирования
Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через ч

Цели математического моделирования
Создание модели всей системы нереально – не существует модели «вообще». Из этого следует множественность моделей одного объекта: для каждой цели требуется своя модель одно

Анализ чувствительности модели
При построении модели параметров и предположения могут быть приняты с некоторой степенью неопределенности, кроме того, параметры могут изменяться в зависимости от внешних условий и во времени. Чувс

Описание внешних воздействий
Внешние воздействия - совокупность факторов, воздействующих на систему и оказывающих влияние на эффективность ее функционирования. Модель внешних воздействий должна обладать следующими осн

Декомпозиция системы
Система представляется набором моделей, отображающих ее поведение на различных уровнях декомпозиции (стратах). Каждый уровень учитывает присущие ему свойства, переменные и зависимости. Дек

Подготовка исходных данных для математической модели
Исходные данные для разработки математической модели содержат выявленные законы функционирования системы в виде операторов, параметры и переменные модели, условные обозначения, классификацию исходн

Модель состава и структуры системы
Модель состава Модель состава – список элементов системы. Сложность построения модели состава состоит в ее неоднозначности. Это же относится и к границам

Виды структур
В основе исследования структуры лежит ее классификация. Принципы построения и вид модели структуры системы зависят от типа системы и целей исследований. При моделировании систем вообще и,

Установление функциональных зависимостей
После перехода от описания моделируемой системы к ее модели, построенной по блочному принципу, необходимо построить математические модели процессов, происходящих в различных блоках. Исходн

Функционально стоимостной анализ.
Под функционально стоимостным анализом понимают метод системного анализа функций объекта (технологического процесса, производства, системы управления), направленный на поиск технико-экономических р

Пути уменьшения неопределенностей
Неопределенность уменьшается при разработке и анализе альтернативных вариантов, дополнительном анализе неопределенных факторов (сбор и обработка недостающих исходных данных, выявление среди множест

Формализация системы в виде автомата
Технические устройства дискретного действия для переработки информации лежат в основе вычислительных машин, автоматических устройств для управления объектами в системах регулирования и управления и

Формализация системы в виде агрегата
При выборе той или иной схемы формализации системы всегда возникает противоречивая задача – получить как можно более простую модель и обеспечить требуемую точность. При таком подходе различные сист

Моделирование процесса функционирования агрегата
Процесс функционирования агрегата состоит из скачков состояния в моменты поступления входных сигналов и выдачи выходных сигналов и изменений состояния между этими моментами. Цель моделиров

Моделирование агрегативных систем
Агрегативные системы (А-системы) - класс сложных систем, обладающий следующим свойством: существует такое (в общем случае неоднозначное) расчленение системы на элементы, при котором к

Модель сопряжения элементов
Математическая модель сложной системы помимо формального описания элементов обязательно включает формальные описания взаимодействия элементов – модель сопряжения. В модели сопряжения эл

Законы Ньютона.
Рассмотрим систему, модель которой может быть представлена как материальная точка, система материальных точек (механическая система). Материальная точка - тело, размеры и форма которого не

Закон сохранения импульса.
Количество движения (импульс) материальной точки Кi = mivi .Это векторная величина, его направление совпадает с направлением скорости. Количество движения (импульс) системы: К =

Работа, энергия, мощность
Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие). Если сила перемещает тело на некоторое расстояние, то она совершает над т

Работа против силы тяжести.
Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или Aт = mg h. Чтобы поднять тело (увеличить расстояние от ц

Работа, затрачиваемая на ускорение.
Если под действием постоянной силы Fуск тело равномерно ускоренно перемещается на расстояние s, то над ним совершается работа Aуск = Fуск s

Работа против сил трения.
Движущееся тело теряет энергию из-за наличия трения, которое действует на поверхности соприкосновения тел и и затрудняет их перемещение относительно друг друга.

Динамика поступательного движения.
Основной закон поступательного движения: производная по времени от количества движения К материальной точки или системы точек относительно неподвижной (инерциальной) системы

Тело, брошено под углом к горизонту.
Как и в случае горизонтально брошенного тела, тело движется, в результате комбинации двух движений: равномерного прямолинейного движения под углом к горизонту и свободного падения в вертикальном на

Движение тела переменной массы.
Дифференциальное уравнение поступательного движения твердого тела, масса которого зависит от времени, имеет вид

Модель колебательного процесса
Колебаниями или колебательным движением называется движение (изменение состояния), обладающее повторяемостью во времени - процесс изменения параметров системы с многократным чередованием их

Модель консервативной системы.
Рассеяние (диссипация) энергии происходит в связи с наличием того или иного вида трения (механическая энергия с течением времени уменьшается за счет преобразования в другие виды энергии, например,

Электрическая подсистема.
Электрическая модель является наиболее и универсальной для описания явлений и процессов различной природы. Типовыми простейшими элементами электрической подсистемы являются резистор с элек

Модели элементов гидравлических систем
Технические системы, в которых происходит перемещение несжимаемой жидкости, принято называть гидравлическими. Зарубин стр. 110 Участок трубопровода. По

Модели элементов пневматических систем
Под пневматическими понимают технические системы, в которых рабочей средой является воздух или газ. Рабочая среда, в отличие от газа является сжимаемой: ее плотность r существенно зависит от

Распределение транспортных единиц по линиям
Имеется n транспортных линий, по j–ой линии необходимо выполнить bj рейсов . В на

Выбор средств доставки грузов.
Имеется m грузообразующих пунктов с объемами грузов аi . Имеется n средств доставки грузов (вид

Экономическая интерпретация задач линейного программирования.
Предприятие располагает определенными, ограниченными производственными мощностями - активными средствами (станки, сырье, рабочая сила, энергия и т.д.). Для изготовления различных видов изделий испо

Перевозки взаимозаменяемых продуктов
Известны объемы и потребности продукции каждого вида. Если продукты, подлежащие перевозке, качественно совершенно различны (уголь, цемент, сахар), так что ни один из них не может быть использован в

Перевозка неоднородного продукта на разнородном транспорте.
Для обеспечения перевозок может быть использовано s автохозяйств, в каждом из которых r типов автомашин. Машины разных типов, обладая различными эксплуатационными характеристиками и р

Основные определения
Строгий подход к термину «управление» требует четкого ответа на вопрос, как и за счет чего может быть выполнена цель управления. Основная особенность управления - целенаправленность

Формальная запись системы с управлением
Основная особенность управляемых систем – в системе существуют свободные функции, которыми может распорядиться субъект (устройство, исследователь, лицо, принимающее решение) в своих интересах.

Модели систем автоматического управления
Система автоматического управления стремится сохранить в допустимых пределах отклонения (рассогласования) ошибки между требуемыми и действительными значениями управляемых переменных при помо

Устойчивость движения систем
Система управления постоянно подвергается возмущениям, отклоняющим ее от заданного закона движения. Действие возмущения сопровождается восстанавливающим действием регулятора. В системе возни

Определение программного движения и управление движением
Потребности ракетной техники привели к совершенно новым задачам, поскольку кратковременное движение ракеты рассматривается как единый переходный процесс. Здесь возникла еще одна задача – опт

Формализация отклонения течения производственного процесса от нормального
Рассмотренные схемы формализации предполагали нормальное течение процесса. Нарушения нормального течения процесса (параметры процесса выходят за допустимые пределы) могут быть связаны с расстройств

Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
Пусть процесс поточного производства штучных изделий складывается из операций обработки, сборки и управления. Линия сборки (совокупность устройств, обеспечивающих сборку изделия) состоит и

Формирование структуры системы
Структура формируется на основании сравнительного анализа альтернативных вариантов системы, обеспечивающих решение проблемы с учетом внешней среды и неопределенностей будущего функционирования.

Выбор основных проектных параметров системы
Формирование технического облика системы предполагает выбор рациональных значений основных проектных параметров системы, исходя из ее максимальной эффективности в принятых условиях применения.

Современное состояние САПР
Современное состояние САПР уже позволяет решать замкнутые задачи – реализовать сквозной процесс, включающий несколько этапов: анализ требований к изделию, разработка трехмерной модели изделия (в ря

Направления разработки проектной составляющей САПР
Направления разработки проектной составляющей САПР должны соответствовать ключевым направлениям развития проектируемых технических систем: прежде всего разрабатываются те САПР, внедрение которых в

Хранилища данных и системы оперативной аналитической обработки данных
Рассмотренные способы и возможные архитектуры информационных систем, предназначены для оперативной обработки данных, т.е. для получения текущей информации, позволяющей решать повседневные проблемы

Предпроектные исследования
Проектирование системы начинается с предпроектных исследований, в результате которых определяются цели системы, объем работ, вырабатываются критерии успешности проекта, оцениваются риски. В результ

Постановка задачи
Стадия постановки задачи включает: проведение системно-аналитического обследования и выработка концепции системы, разработка технического задания на проект. Системно-аналитическое обсле

Проектирование системы
На стадии проектирования на основе анализа предметной области и требований к системе, сформулированных в ТЗ, разрабатываются основные архитектурные решения. Архитектура процессов –

Архитектура программного обеспечения
Система состоит из двух видов программного обеспечения – общего и специального. Общее программное обеспечение: - программное обеспечение сетевого доступа к приложениям и БД

Организационное обеспечение системы
Сложность проектирования организационного обеспечения лежит в социальной, а не в технической сфере – задача психологов и психоаналитиков. Внедрение новых технологий обеспечивает неограниченный прям

Реализация и внедрение системы
Разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Конечные пользователи на этой фазе оц

Оценка потенциальной емкости рынка и потенциального объема продаж
Потенциальная емкость рынка товаров и услуг для конкретной системы (проекта): максимальный объем рынка за определенный период, соответствующий техническим и эксплуатационным возможностям сис

Оценка конкурентоспособности
Оценку конкурентов рассматриваемой системы проводится в два этапа: выявление возможных конкурентов и сравнительный анализ конкурентов. На первом этапе составляется общий список конкурентов

Метод определения чистой текущей стоимости.
Метод оценки приемлемости инвестиций на основе критерия NPV является базовым в современном инвестиционном анализе и широко применяется на практике. Чистая текущая стоимость - NPV

Метод расчета рентабельности инвестиций
Рентабельность инвестиций - PI (profitability index) - это показатель, позволяющий определить, в какой мере возрастет стоимость фирмы (богатство инвестора) в расчете на 1 доллар (рубль, грив

Метод расчета внутренней нормы прибыли
Внутренняя норма прибыли (внутренний коэффициент окупаемости инвестиций, поверочный дисконт) - IRR (internal rate of return) - представляет собой уровень доходности средств, направленных на

Расчет периода окупаемости инвестиций
Период окупаемости инвестиций РР (payback period) - это срок, который необходим для возмещения суммы первоначальных инвестиций (рассчитанный без дисконтирования). Если величины дене

Задачи управления проектами
Успешность деятельности предприятия зависит от непрерывной последовательности управленческих решений по инвестиции в проект и управление проектом. Эти решения базируются на анализе внешней среды кА

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги