рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Сверхтвердые сплавы и керамические материалы

Сверхтвердые сплавы и керамические материалы - раздел Образование, Конструкционные легированные стали   Применяемые Для Лезвийного Инструмента Синтетические Сверхтве...

 

Применяемые для лезвийного инструмента синтетические сверхтвердые материалы (СТМ) являются плотными модификациями углерода и нитрида бора.

Алмаз и плотные модификации нитрида бора, имеющие тетраэдрическое распределение атомов в решетке, являются самыми твердыми структурами.

Синтетический алмаз и кубический нитрид бора получают методом каталитического синтеза и безкатализаторного синтезов плотных модификаций нитрида бора при статическом сжатии.

Применение алмаза и нитрида бора для изготовления лезвийного инструмента стало возможным после их получения в виде крупных поликристаллических образований.

В настоящее время существует большое разнообразие СТМ на основе плотных модификаций нитрида бора. Они различаются технологией их получения, структурой и основными физико-механическими свойствами.

Технология их получения основана на трех физико-химических процессах:

1) фазовом переходе графитоподобного нитрида бора в кубический:

BNGp ® BNCub

2) фазовом переходе вюрцитного нитрида бора в кубический:

BNVtc ® BNCub

3) спекании частиц BNCub.

Уникальные физические и химические свойства (высокая химическая устойчивость, твердость, износостойкость) этих материалов объясняются чисто ковалентным характером связи атомов в нитриде бора в сочетании с высокой локализацией валентных электронов у атомов.

Термостойкость инструментального материала является его важной характеристикой. Приводимый в литературе широкий интервал значений термической устойчивости BN (600–1450°С) объясняется как сложностью физико-химических процессов, происходящих при нагреве BN, так и неопределенностью в какой-то степени термина «термостойкость» применительно к СТМ.

При рассмотрении термостойкости поликристаллических СТМ на основе алмаза и плотных модификаций нитрида бора (они часто являются композиционными и количество связующего в них может достигать 40%) следует учитывать, что их термостойкость может определяться как термической устойчивостью BN и алмаза, так и изменением при нагреве свойств связующего и примесей.

В свою очередь, термическая устойчивость алмаза и BN на воздухе определяется как термической стабильностью фаз высокого давления, так и их химической стойкостью в данных условиях, в основном относительно окислительных процессов. Следовательно, термическая устойчивость связана с одновременным протеканием двух процессов: окислением алмаза и плотных модификаций нитрида бора кислородом воздуха и обратным фазовым переходом (графитизацией), поскольку они находятся в термодинамически неравновесном состоянии.

По технологии получения СТМ на основе алмаза можно разделить на две группы:

1) поликристаллы алмаза, получаемые в результате фазового перехода графита в алмаз;

2) поликристаллы алмаза, получаемые спеканием алмазных зерен.

Наиболее часто встречающийся размер зерен – примерно 2,2мкм, а зерен, размер которых превышает 6 мкм, практически нет.

Прочность керамики зависит от среднего размера зерна и, например, для оксидной керамики снижается от 3,80–4,20 ГПа до 2,55–3,00 ГПа при увеличении размеров зерен соответственно от 2–3 до 5,8–6,5 мкм.

У оксидно-карбидной керамики гранулометрический состав еще более тонкозернистый, и средний размер зерен Al2O3 в основном меньше 2 мкм, а размер зерен карбида титана составляет 1–3 мкм.

Существенным недостатком керамики является ее хрупкость – чувствительность к механическим и термическим ударным нагрузкам. Хрупкость керамики оценивается коэффициентом трещиностойкости – KС.

Коэффициент трещиностойкости KС, или критический коэффициент интенсивности напряжений в вершине трещины, является характеристикой сопротивления разрушению материалов.

Высокие твердость, прочность и модуль упругости, сложность механической обработки и небольшие размеры образцов из СТМ ограничивают применение большинства используемых в настоящее время методов определения коэффициента трещиностойкости.

Для определения коэффициента трещиностойкости – KС СТМ используют метод диаметрального сжатия диска с трещиной и метод определения вязкости разрушения керамики по внедрению индентора.

Для устранения хрупкости керамики разработаны различные составы оксидно-карбидной керамики.

Включение в керамику на основе оксида алюминия моноклинной двуокиси циркония ZrO2 вызывает улучшение структуры и тем самым заметно повышает ее прочность.

Инструмент, оснащенный поликристаллическими алмазами (ПКА), предназначен для чистовой обработки цветных металлов и сплавов, неметаллических материалов вместо твердосплавного инструмента.

Композит 01 и композит 02 – поликристаллы из кубического нитрида бора (КНБ) с минимальным количеством примесей – применяют для тонкого и чистового точения, преимущественно без удара, и торцового фрезерования закаленных сталей и чугунов любой твердости, твердых сплавов (Со > 15%) с глубиной резания 0,05–0,50 мм (максимально допустимая глубина резания 1,0 мм).

Композит 05 – поликристаллы, спеченные из зерен КНБ со связкой, – применяют для предварительного и окончательного точения без удара закаленных сталей (HRC < 60) и чугунов любой твердости с глубиной резания 0,05–3,00 мм, а также для торцового фрезерования заготовок из чугуна любой твердости, в т. ч. по корке, с глубиной резания 0,05–6,00 мм.

Композит 10 и двухслойные пластины из композита 10Д (композит 10 на подложке из твердого сплава) – поликристаллы на основе вюрцитоподобного нитрида бора (ВНБ) – применяют для предварительного и окончательного точения с ударом и без удара и торцового фрезерования сталей и чугунов любой твердости, твердых сплавов (Со > 15%) с глубиной резания 0,05–3,00 мм, прерывистого точения (наличие на обрабатываемой поверхности отверстий, пазов, инородных включений).

Таким образом, инструменты из СТМ на основе нитрида бора и алмаза имеют свои области применения и практически не конкурируют друг с другом.

Износ резцов из композитов 01, 02 и 10 – сложный процесс с преобладанием при непрерывном точении адгезионных явлений.

С увеличением контактных температур в зоне резания свыше 1000°С возрастает роль теплового и химического факторов – интенсифицируются:

– диффузия;

– химический распад нитрида бора;

– фазовый α-переход;

– абразивно-механическое изнашивание.

Поэтому при точении сталей со скоростями 160–190 м/мин износ резко возрастает, а при v > 220 м/мин становится катастрофическим почти независимо от твердости стали.

При прерывистом точении (с ударом) преобладает абразивно-механическое изнашивание с выкрашиванием и вырывом отдельных частиц (зерен) инструментального материала; роль механического удара возрастает при увеличении твердости матрицы обрабатываемого материала и объемного содержания карбидов, нитридов и т. п.

Наибольшее влияние на износ и стойкость резцов при непрерывном точении сталей оказывает скорость резания, при точении с ударом – скорость и подача, при точении чугунов – подача, причем обрабатываемость ковких чугунов ниже, чем серых и высокопрочных.

 

– Конец работы –

Эта тема принадлежит разделу:

Конструкционные легированные стали

Белорусский государственный... технологический университет... А К Вершина Н А Свидунович Д В Куис...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Сверхтвердые сплавы и керамические материалы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Конструкционные легированные стали
Легированной называется сталь, в которую для придания ей определенных механических, технологических или специальных свойств введены легирующие элементы. Легирующие элементы. Элемент

Маркировка легированных сталей
  Для обозначения марок сталей разработана система, принятая в ГОСТах. Обозначения состоят из числа цифр и букв, указывающих на примерный состав стали. Каждый легирующий элем

СТРУКТУРА, СВОЙСТВА И ПРИМЕНЕНИЕ СТАЛЕЙ
Цель работы: изучение состава, структуры маркировки и механических свойств легированных сталей, выбор оптимального состава материала и режимов упрочняющей обработки в соответствие

Легированные конструкционные стали
Механические свойства сталей и, следовательно, конструктивная прочность повышается введением в их состав легирующих добавок, основные из которых – хром, никель, кремний и марганец. Другие легирующи

К деталям
Какай выбрать материал для изготовления детали, как ее изготовить и упрочнить – зависит, прежде всего, от условий работы детали, величины и характера, нагружения при эксплуатации, ее размеров, масс

Стали и упрочняющая обработка для типовых деталей машин
Валы. В зависимости от условий эксплуатации стойкость валов определяется усталостной прочностью при кручении и изгибе, контактной прочностью или износостойкостью. Малонагруженные ме

Прокаливаемость
  Под прокаливаемостью подразумевают глубину проникновения закаленной зоны[2]. Несквозная прокаливаемость объясняется тем, что при закалке деталь охлаждается быстрее с поверх

Цементация стали
При цементации происходит поверхностное насыщение стали углеродом, в результате чего получается высокоуглеродистый поверхностный слой. Поскольку для цементации берут низкоуглеродистую сталь, то сер

Натурные и эксплуатационные испытания
В заключение необходимо отметить, что какими бы точными ни были предварительные расчеты конструкционной прочности, обеспечить которую должен выбираемый материал, нельзя судить только по ним о надеж

МАТЕРИАЛЫ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА
Цель работы: ознакомление со строением, свойствами инструментальных углеродистых, быстрорежущих сталей, твердых, сверхтвердых сплавов и керамических материалов; изучение их структу

Углеродистые стали
  Углеродистые стали (ГОСТ 1435-90) производят: – качественными - У7, У8, У9, …, У13; – высокачественными - У7А, У8А, У9А, …, У13А. Буква У

Химический состав (ГОСТ 5950-73, ГОСТ 19265-73, ГОСТ 28393-89) и режимы термической обработки наиболее применяемых инструментальных сталей
Марка стали Содержание элементов, % Температура, °С С Si Cr W Mo

Температуры отпуска различного инструмента из углеродистой стали
Инструмент Сталь Приемочная твердость рабочей части HRC Температура отпуска, °С Метчики У10–У12

Низколегированные стали
  Эти стали содержат до 5% легирующих элементов (табл. 3.1), которые вводят для увеличения закаливаемости, прокаливаемости, уменьшения деформаций и опасности растрескивания инструмент

Быстрорежущие стали
  Быстрорежущие стали предназначены для изготовления режущего инструмента, работающего при высоких скоростях резания. Быстрорежущая сталь должна обладать высокой горячей твер

Некоторых быстрорежущих сталей
Сталь Температура закалки, °С Состав твердого раствора, % (атомн.) К4р58, °С Остаточный аустенит, %

Из быстрорежущих сталей
Марка стали Закалка Отпуск Температура, °С Твердость HRC Количество аустенита, % Температура,

Штамповые стали
  Для обработки металлов давлением применяют инструменты, деформирующие металл, – штампы, пуансоны, ролики, валики и т. д. Стали, применяемые для изготовления инструмента такого рода,

Ударного деформирования в холодном состоянии (ГОСТ 6950-73)
Сталь Содержание элементов, % Закалка Отпуск С Si Cr W Температура.

Состав сталей для штампов холодного деформирования,
% (ГОСТ 5950-73) Сталь С Сr Мо W V Х12 Х12М Х12Ф1 Х6ВФ

Режимы термической обработки стали Х12Ф1 (Х12М)
Режим Температура, °С Среда охлаждения Твердость HRC (после закалки) Количество аустенита, % Температура отпуска,

Состав стали для штампов горизонтально-ковочных
машин и прессов, % Сталь C Mr Si Cr w Mo V

Режимы термической обработки сталей для прессового инструмента
Марка стали Отжиг Закалка Отпуск Температура, °С Твердость НВ Температура, °С

Твердые сплавы
  В настоящее время для скоростного резания металлов применяют инструмент, оснащенный твердыми сплавами. Рабочая температура резания инструмента из твердых сплавов до 800–1000°С.

Свойства некоторых твердых сплавов (гарантируемые)
Группа сплава Марка сплава Состав, % Сопротивление изгибу, МПа Плотность, г/см3 Твердость HRA

Порядок выполнения работы
  1. Изучите марки и химический состав сталей и сплавов, классификацию сталей по способу изготовления и по назначению в зависимости от содержания хрома, никеля и меди, требования к ма

Белые чугуны
  В белых чугунах весь углерод находится в химически связанном состоянии (в виде цементита), т. е. кристаллизуются они, как и углеродистые стали, по метастабильной диаграмме Fe – Fe

Серые, высокопрочные и ковкие чугуны
  Серые, высокопрочные и ковкие чугуны относятся к материалам, в которых весь углерод или его часть находится в виде графита. Излом этих чугунов – серый, матовый. В их структуре разли

Порядок выполнения работы
  1. Изучите классификацию чугунов, их строение, маркировку и способы получения. 2. Исследуйте под микроскопом шлифы и указать, к какому виду чугунов относится каждый образец

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги