рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Упаковка ДНК в хромосомах

Упаковка ДНК в хромосомах - раздел Образование, Тема ХРОМОСОМНАЯ ТЕОРИЯ Молекулы Днк В Эукариотических Клетках Очень Велики. Так, Длина Мо­лекул Днк,...

Молекулы ДНК в эукариотических клетках очень велики. Так, длина мо­лекул ДНК, выделенных из клеток че­ловека, достигает нескольких сантиме­тров. Принято считать, что каждая эукариотическая хромосома содержит одну — единственную непрерывную молекулу ДНК. Учитывая видовое ко­личество хромосом у млекопитающих, можно сказать, что в среднем у них на интерфазное ядро приходится около 2 м ДНК, находящейся в сферическом ядре диаметром менее 10 мкм. При этом в ядре должен сохраняться опре­деленный порядок расположения мо­лекул ДНК, чтобы обеспечить ее упо­рядоченное функционирование.

 

 

 

 

Молекулы ДНК в ядрах эукариоти­ческих клеток всегда находятся в ком­плексе с белками в составе хроматина, который образуется из хромосом по­сле окончания деления ядер в резуль­тате сложного процесса раскручива­ния (деспирализации) хромосом.

На долю белков приходится около 60% сухого веса хроматина. Белки в его составе очень разнообразны. Обычно их разделяют на две группы: гистоны и негистоновые белки. Имен­но гистоны, характерные только для эукариотических клеток, осуществля­ют первые этапы упаковки ДНК, очень схожие у большинства изученных объектов

На долю гистонов приходится до 80% всех белков хроматина. Их вза­имодействие с ДНК происходит за счет ионных связей и не зависит от по­следовательности нуклеотидов в со­ставе молекулы ДНК. Гистоны не от­личаются большим разнообразием. Это глобулярные белки, представлен­ные 5-7 типами молекул. Наиболее из­вестны следующие классы гистонов: HI, Н2А, Н2В, НЗ и Н4. Их основные свойства определяются относительно высоким содержанием основных ами­нокислот: лизина и аргинина (рис. 3.7). Положительные заряды на аминогруп­пах указанных аминокислот обеспечи­вают электростатическую связь гисто­нов с отрицательными зарядами на фосфатных группах ДНК. Из всех ядерных белков гистоны изучены наи­более хорошо. Их молекулярная масса относительно невелика (максималь­ная — у гистона НЗ — 153 тыс. дальтон). Практически у всех эукариот они обладают сходными свойствами и под­разделяются на одни и те же классы. Из исследованных эти белки наиболее консервативны: их аминокислотные последовательности близки даже у от­даленных видов. Исключение состав­ляют гистоны HI, для которых харак­терны значительные межвидовые и межтканевые вариации

В процессе жизнедеятельности клеток гистоны могут подвергаться посттрансляцион­ным модификациям, что изменяет их свойства и способность связываться с ДНК. Гистоны синтезируются в цитоплазме, переносятся в ядро и связыва­ются с ДНК во время ее репликации в S-периоде клеточного цикла. Вклю­чившиеся в хроматин гистоны очень стабильны и имеют низкую скорость обмена.

Присутствие гистонов во всех эукариотических клетках, их сходство да­же у очень отдаленных видов, обяза­тельность в составе хромосом и хрома­тина — все это говорит о чрезвычайно важной роли этих белков в жизнедея­тельности клеток. Этапным событием в изучении упаковки ДНК в составе хроматина стало открытие нуклеосом частиц, в которых происходит первый этап упаковки ДНК в хроматине. Сердцевина нуклеосомы всегда кон­сервативна, содержит восемь молекул: по две молекулы гистонов Н4, НЗ, Н2А, Н2В. По поверхности сердцеви­ны располагается участок ДНК из 146 нуклеотидных пар, образующий 1,75 оборота вокруг сердцевины. Неболь­шой участок ДНК остается несвязан­ным с сердцевиной, он называется линкером (рис. 3.8). В разных объек­тах линкерный участок может варьи­ровать от 8 до 114 нуклеотидных пар на нуклеосому

Рассчитано, что на весь гаплоидный геном человека (3 х 109 пар оснований) приходится 1,5 х 107 нуклеосом. Общий вид хроматина, представленного молекулой ДНК, упакованной с помощью нуклеосомных структур, можно сравнить с буса­ми на нитке (рис. 3.9). Нуклеосомы способны к самосборке при наличии в пробирке ДНК и гистонов в опреде­ленном соотношении. Первый нуклеосомный уровень компактизации ДНК увеличивает плотность упаковки ДНК в 6-7раз.

 

В следующий этап упаковки нуклеосомная структура хроматина вовле­кается с помощью гистона HI, который связывается с линкернои частью ДНК и поверхностью нуклеосомы. Благодаря сложному взаимодействию всех компонентов возникает упорядо­ченная структура спирального типа, которую часто называют соленоидом (рис. 3.10). Она повышает компакт­ность ДНК еще в 40 раз. Поскольку со­леноидная структура имеет сниженную способность связываться с белка­ми, обеспечивающими транскрипцию, то считается, что этот уровень компактизации ДНК может играть роль фак­тора, инактивирующего гены. Некото­рые авторы рассматривают соленоид­ную структуру как один из возможных вариантов упаковки хроматина

с по­мощью гистона HI и полагают вероятным существование и других морфо­логических вариантов, например, нуклеомер, или сверхбусин (рис. 3.11).

Более высокие уровни компактизации ДНК в хроматине связаны с негистоновыми белками. На их долю при­ходится около 20% всех белков хрома­тина. Эту сборную группу белков от­личает широкий спектр свойств и функций. Всего фракция негистоновых белков объединяет около 450 ин­дивидуальных белков, свойства и кон­кретные функции которых еще не до­статочно изучены. Выяснено, что не­которые из них специфично связыва­ются с определенными участками ДНК, в результате чего фибриллы хро­матина в местах связывания ДНК с не­ гистоновыми белками образуют петли. Таким образом, более высокие уровни упаковки ДНК в составе хроматина обеспечиваются не спирализацией ни­тей хроматина, а образованием попе­речной петлистой структуры вдоль хромосомы (рис. 3.12). На всех указан­ных этапах компактизации ДНК хро­матин представлен в активной форме, в нем происходит транскрипция, син­тез всех типов молекул РНК. Такой хроматин называют эухроматином. Дальнейшая упаковка хроматина ве­дет к переходу его в неактивное состо­яние с образованием гетерохроматина

Этот процесс связан со спирализацией групп петель и образованием из фиб­рилл хроматина розеткоподобных структур, которые обладают оптичес­кой и электронной плотностью и назы­ваются хромомерами (рис. 3.12). Пред­полагается, что вдоль хромосомы рас­положено большое количество хромомер, соединенных между собой в еди­ную структуру участками хроматина с пуклеосомной или соленоидной упа­ковкой ДНК. Каждая пара гомологич­ных хромосом имеет свой хромомерный рисунок, который можно выявить с помощью специальных методов ок­рашивания при условии сиирализации хроматина и перехода его в состояние хромосом.

 

 

 

Петельно-розеточная структура хроматина обеспечивает не только упаковку ДНК, но и организует функ­циональные хромосом, поскольку в своих основаниях петли ДНК связаны с негистоновыми белками, в состав ко­торых могут входить ферменты репли­кации, обеспечивающие удвоение ДНК, и ферменты транскрипции, бла­годаря которым происходит синтез всех типов РНК.

Участки ДНК, упакованные в виде гетерохроматина, могут иметь двоя­кую природу. Различают два типа гетерохроматина: факультативный и кон­ститутивный (структурный). Факуль­тативный гетерохроматин представля­ет собой участки генома, временно инактивированные в тех или иных клетках. Примером такого хроматина служит половой гетерохроматин инактивированной Х-хромосомы в сомати­ческих клетках женщин. Структурный гетерохроматин во всех клетках посто­янно находится в неактивном состоя­нии и, вероятно, выполняет структур­ные или регуляторные функции.

 

 

 

– Конец работы –

Эта тема принадлежит разделу:

Тема ХРОМОСОМНАЯ ТЕОРИЯ

Хххххххх хххххххх хххххх Тема ХРОМОСОМНАЯ ТЕОРИЯ... Занятие Генные мутации... Занятие Хромосомные и геномные мутации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Упаковка ДНК в хромосомах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Хххххххх
  хххххххх   хххххх     МЕТОДИЧЕСКИЕ УКАЗАНИЯ по курсу     “Медицинск

Тема 2. ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ
Занятие 6. Наследование признаков, сцепленных с полом ………………………………………. Занятие7. Особенности наследования генов, локализованных в одной хромосоме …………… Занятие8. Картирова

Тема 5 ГЕНЕТИКА ПОПУЛЯЦИИ
Занятие. Генетическая структура популяции (перекрестников и самоопылителей) 1. Дайте определение популяции. Охарактеризуйте популяции по типу размножения организмов.

Материальные основы наследственности
Понятие о генетической информации. Доказательства роли ядра и хромосом в явлениях наследственности. Локализация генов в хромосо­мах. Роль цитоплазматических факторов в передаче наследственной инфор

Генетический анализ
Основные закономерности наследования. Цели и принципы гене­тического анализа. Методы: гибридологический, мутационный, цитогенетический, популяционный, близнецовый, биохимический, статистического. Г

Внеядерное наследование
Закономерности нехромосомного наследования, отличие от хромо­сомного наследования. Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.

Генетическая изменчивость
Понятие о наследственной и ненаследственной (модификационной) изменчивости. Формирование признаков как результат взаимо­действия генотипа и факторов среды. Норма реакции генотипа. Адап­тивный харак

Основы молекулярной генетики
Представление школы Моргана о строении и функции гена. Исследование тонкой структуры гена на примере фага Т4 (Бензер). Ген как единица функции (цистрон). Перекрывание генов в одном участке ДНК. Инт

Популяционная генетика
Понятие о виде и популяции. Популяция как естественно-истори­ческая структура. Понятие о частотах генов и генотипов. Математиче­ские модели в популяционной генетике. Закон Харди - Вайнберга, воз­мо

Генетика человека
Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный. Исполь

История генетики человека
Успехи генетики человека, ее исто­рия, тесно связаны с развитием всех разделов генетики. Задолго до откры­тия Г. Менделя различными авторами были описаны патологические наслед­ственные признаки у ч

Генеалогический метод
Основные закономерности наслед­ственности, установленные для живых организмов, универсальны и в полной мере справедливы и для человека. Вместе с тем как объект генетических исследований человек име

Близнецовый метод
Это метод изучения генетических закономерностей на близнецах. Впер­вые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает воз­можность определить вклад генетиче­ских (наследственных) и

Популяционно-статистический метод
Одним из важных направлений в современной генетике является популяционная генетика. Она изучает ге­нетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство

Цитогенетический метод
Основа метода — микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. XX в. для изучения морфологии хромосом человека, подсчета хр

Метод генетики соматических клеток
Тот факт, что соматические клетки несут в себе весь объем генетической информации, дает возможность изучать на них генетические закономер­ности всего организма.  

Биохимический метод
Причиной многих врожденных на­рушений метаболизма являются различные дефекты ферментов, возника­ющие вследствие изменяющих их структуру мутаций. Биохимичские по­казатели (первичный продукт гена, на

Молекулярно-генетические методы
Конечный итог молекулярно-генетических методов — выявление изме­нений в определенных участках ДНК, гена или хромосомы. В их основе ле­жат современные методики работы с ДНК или РНК. В 70-80 гг. в св

Химический состав и строение молекулы ДНК
Основоположник генетики Грегор Мендель в 1865 г. впервые доказал, что каждый признак организма определя­ется парой наследственных факторов. В начале XX в. парные наследствен­ные факторы получили на

Организация генетического материала в хромосомах человека
Общая организация хромосом чело­века традиционна: в метафазе хромо­сома состоит из двух сестринских хроматид, соединенных между собой в районе первичной перетяжки (центромеры). Центромера делит хро

Хромосомы человека
История развития цитогенетики человека Впервые митотические хромосомы человека были описаны в работах Дж. Арнольда (1879) и В. Флемминга (1882). В последующие годы различ­ные оценки их кол

Современные методы картирования хромосом
На рубеже 70-х гг. XX в. молекуляр­ная генетика достигла определенной завершенности в своем развитии : бы­ли установлены структура и механизм репликации ДНК, провозглашена "центральная догма&q

Изучение геномов человека
Последние десятилетия на рубеже двух эпох отображены стремительным ростом в сфере высшей биологии человека. Это связано, первоначально, с трудами по расшифровке генома людей, осуществлёнными в пред

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги