рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Векторное произведение векторов. Свойства векторного произведения.

Векторное произведение векторов. Свойства векторного произведения. - раздел Образование, Понятие вектора. Линейные операции над векторами Векторным Произведением Векторов ...

Векторным произведением векторов и называется вектор , который определяется следующими условиями:

1) Его модуль равен где - угол между векторами и .

2) Вектор перпендикулярен к плоскости, определяемой перемножаемыми векторами и .

3) Вектор направлен так, что наблюдателю, смотрящему с его конца на перемножаемые векторы и , кажется, что для кратчайшего совмещения первого сомножителя со вторым первый сомножитель нужно вращать против часовой стрелки (см. рисунок).

Векторное произведение векторов и обозначается символом :

(25)

или

(26)

Основные свойства векторного произведения:

1) Векторное произведение равно нулю, если векторы и коллинеарны или какой-либо из перемножаемых векторов является нулевым.

2) При перестановке местами векторов сомножителей векторное произведение меняет знак на противоположный (см. рисунок):

Векторное произведение не обладает свойством переместительности.

9) Площадь параллелограмма. Необходимое и достаточное условие коллинеарности двух векторов. для коллинеарности двух векторов и необходимо и достаточно, чтобы они были связаны равенствами или .

Перейдем к координатной форме полученного условия коллинеарности двух векторов.

Пусть вектор задан в прямоугольной декартовой системе координат на плоскости и имеет координаты , тогда вектор имеет координаты (при необходимости смотрите статью операции над векторами в координатах). Аналогично, если вектор задан в прямоугольной системе координат трехмерного пространства как , то вектор имеет координаты .

Следовательно, для коллинеарности двух ненулевых векторов и на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: или .

Для коллинеарности двух ненулевых векторов и в пространстве необходимо и достаточно, чтобы или .

Получим еще одно условие коллинеарности двух векторов, основанное на понятии векторного произведения векторов и .

Если ненулевые векторы и коллинеарны, то по определению векторного произведения , что равносильно равенству . А последнее равенство возможно лишь тогда, когда векторы и связаны соотношениями или , где - произвольное действительное число (это следует из теоремы о ранге матрицы), что указывает на коллинеарность векторов и . Таким образом, два ненулевых вектора и коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.

– Конец работы –

Эта тема принадлежит разделу:

Понятие вектора. Линейные операции над векторами

Вектором называется направленный отрезок имеющий определенную длину т е отрезок определенной длины у которого одна из ограничивающих его точек... Длина вектора называется его модулем и обозначается символом Модуль вектора... Вектор называется нулевым обозначается если начало и конец его совпадают Нулевой вектор не имеет определенного...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Векторное произведение векторов. Свойства векторного произведения.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейные комбинации векторов.
Пусть – векторы из некоторого линейного пространства. Линейной комбинацией ве

Коллинеарность и компланарность векторов.
Три вектора (или большее число) называются компланарными, если они, будучи приведенными к общему началу, лежат в одной плоскости[1]. Свойства компланарности Пус

Свойства коллинеарности
Пусть — векторы пространства

Понятие базиса. Разложение вектора по базису.
  Ба́зис (др.-греч. βασις, основа) — множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть е

Скалярное произведение векторов. Свойства скалярного произведения.
Скаля́рное произведе́ние (в зарубежной литературе - scalar product, dot product, inner product ) — операция над двумя векторами, результатом которой является число (скаля

Скалярное произведение векторов в декартовых координатах.
Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов

Векторное произведение векторов в декартовых координатах.
Выражение для векторного произведения в декартовых координатах Если два вектора

Смешанное произведение векторов. Свойства смешанного произведения.
Сме́шанное произведе́ние векторов

Смешанное произведение векторов в декартовых координатах.
Скалярным произведением двух векторовназывается число, равное произведению длинны одного их этих векторов на проекцию другого вектора на ось, определяемую первым из указанных векторов.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги