рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Компрессор газотурбинного двигателя

Компрессор газотурбинного двигателя - раздел Образование, Функциональная схема пилотажного комплекса ЛА Узел Газотурбинного Двигателя, Служащий Для Повышения Давления Воздуха. Масса...

узел газотурбинного двигателя, служащий для повышения давления воздуха. Масса К. составляет от 25 (турбореактивного двухконтурного двигателя с форсажной камерой) до 40% (турбореактивного двигателя) массы газотурбинного двигателя. Степень повышения давления в К.((π)к*) по мере совершенствования газотурбинного двигателя возрастает: в первых турбореактивных двигателях (π)к* была равна 4—5, в турбореактивных двухконтурных двигателях и турбовинтовых двигателях 80-х гг. она достигает 30—40.
Для реализации термодинамического цикла с постоянным давлением в камере сгорания в авиационном газотурбинном двигателе используются только лопаточные К. (см. Лопаточные машины). Повышение давления в К. происходит в результате преобразования механической энергии, подводимой к валу К. от турбины, в потенциальную энергию воздуха. Во всех типах лопаточных К. передача механической энергии привода воздуху в соответствии с Эйлера формулой реализуется в роторе путём воздействия на поток аэродинамических сил, возникающих при обтекании лопаток рабочих колёс; при этом увеличивается и кинетическая и потенциальная энергия воздуха. В неподвижных элементах К. — направляющих аппаратах компрессора или диффузорах — часть кинетической энергии преобразуется в потенциальную.
К. газотурбинного двигателя состоит, как правило, из несколько последовательно расположенных ступеней (см. Ступень компрессора, турбины); по форме средней поверхности тока в них различают осевые (ОК), центробежные (ЦК), диагональные (ДК) и комбинированные, состоящие из ступеней разных типов (осецентробежные — ОЦК, оседиагональные). Форма поверхности тока определяет особенности преобразования энергии в рабочем колесе: в ОК работа сжатия примерно равна изменению кинетической энергии в относительном движении; в ЦК повышение давления в большей степени происходит вследствие изменения кинетической энергии в переносном движении, равного работе центробежных сил. Увеличение радиуса средней поверхности тока в ЦК и ДК увеличивает работу, передаваемую воздуху: при одинаковой окружной скорости на внешнем диаметре рабочего колеса работа ступени ЦК в 2—3 раза превышает работу осевой ступени.
При высоких (πк*) К. обычно делится на несколько последовательных, механически не связанных каскадов (групп ступеней), каждый из которых приводится отдельной турбиной; используются одно-, двух- и трёхкаскадные К. Первая (по потоку) группа ступеней называется К. низкого давления (КНД), К. газогенератора — К. высокого давления; средний каскад К. трехкаскадного двигателя — К. среднего давления. КНД двухконтурного турбореактивного двигателя состоит из вентилятора и (в некоторых случаях) подпорных ступеней, устанавливаемых во внутреннем контуре. В авиационном газотурбинном двигателе КНД составляется из осевых ступеней. ОК позволяет получить производительность до 200 кг/с с 1 м2 лобовой площади на входе в первое рабочее колесо. Политропический коэффициент полезного действия может превышать 90% (см. Коэффициент полезного действия компрессора, турбины).
Число ступеней ОК авиационного газотурбинного двигателя достигает 17; с конца 70-х гг., несмотря на рост (π)к* число ступеней в ОК вновь создаваемых двигателей уменьшается — средняя удельная работа на ступень увеличивается с 20—25 до 40—60 кДж*с/кг, главным образом за счёт увеличения окружной скорости до 500 м/с и более.
В каждом каскаде ОК рабочие колёса жёстко связаны друг с другом сваркой, болтовыми соединениями, торцовыми шлицами или стяжным болтом. Наиболее распространённая конструкция ротора барабанно-дисковая. Лопатки рабочих колёс крепятся в ободе диска с помощью замков преимущественно типа «ласточкин хвост» или набираются в кольцевой паз на ободе диска. Лопатки направляющих аппаратов крепятся в кольце, устанавливаемом в наружном корпусе К., и либо выполняются консольными, либо объединяются по внутреннему диаметру кольцом, на котором укреплена уплотнительная обечайка, покрытая истираемым материалом, или сотовая. На соответствующем участке поверхности ротора выполняются в этом случае несколько кольцевых гребешков, образующих лабиринтное уплотнение, предотвращающее перетекание воздуха из области за направляющим аппаратом на вход в него.
Центробежный К. состоит из входного направляющего аппарата, рабочего колеса (РК), безлопаточного и лопаточного диффузора и радиально-осевого канала со спрямляющим аппаратом. В авиационных конструкциях используются преимущественно полуоткрытые РК, представляющие собой диск с выполненными за одно с ним лопатками. В РК поток отклоняется в тангенциальном и радиальном направлениях. На выходном участке лопатки выполняются либо радиальными, либо загнутыми назад («реактивное» колесо). Только в ЦК первых турбореактивных двигателей использовались «активные» колёса с лопатками, загнутыми на выходном участке в направлении вращения. Наиболее высокий коэффициент полезного действия и благоприятную форму характеристики имеют ЦК с реактивными колёсами, ЦК бывают двухступенчатыми или их комбинируют с осевыми ступенями. Степень повышения давления в ЦК зависит в основном от окружной скорости u2 на внешнем диаметре РК и отношения D2/D1 и достигает в первых ступенях 6—8, во второй и последней ступенях ОЦК — 3—4. Политропический коэффициент полезного действия 83—86% и существенно зависит от степени повышения давления и размеров К.
Конструкция ДК аналогична конструкции ЦК. Степень повышения давления в ДК также определяется значением u2, отношением D2/D1 и углом выхода потока из рабочего колеса и достигает (π)к* = 3—5 при политропическом коэффициенте полезного действия 85—87%; на коэффициент полезного действия значительно влияют диаметр компрессора и зазор между лопатками РК и корпусом, зависящий от жёсткости конструкции и тепловых деформаций.

– Конец работы –

Эта тема принадлежит разделу:

Функциональная схема пилотажного комплекса ЛА

Пилотажный комплекс ПК это комплекс оборудования осуществляющий... В ПК входят три основных функциональных системы система штурвального управления СШУ система траекторного...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Компрессор газотурбинного двигателя

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принципы работы ГТД.
ГТД состоит из входного устройства, камеры сгорания, газовой турбины и выходного устройства.

Уравнения движения ТРД.
Получим описание одновального ТРД с регулируемым соплом относительно частоты вращения ротора турбокомпрессора. Запишем уравнение моментов на валу турбокомпрессора:

Матричная форма записи уравнений ГТД.
При синтезе САУ многомерными объектами полезным является исп-е матричной формы записи уравнения движения

Свойства ТРД как объекта управления.
При изменение внешних условий PH=Var, TH=Var, VH=Var режима работы двигателя изменяются значение коэффициента в уравнениях движения поэтому важно знать как изменяют

Основные характеристики ГТД.
Газотурбинный двигатель (ГТД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины.

Особенности измерения температуры газа ГТД.
Распределение температуры, как перед турбиной, так и за турбиной неравномерно как по радиусу, так и по окружности. Величина неравномерности поля температур составляет 100…200 градусов. Нер

Основные принципы построения САУ температуры газа ГТД.
В качестве управляющих факторов, с помощью которых оказывается воздействие на температуру газа в ГТД, выбирается расход топлива в основную камеру сгорания Gт или площадь критическ

Законы управления ГТД на форсажных режимах.
Для форсированного повышения тяги силовой установки используют дожигание топлива в форсажной камере. Режим турбореактивного двигателя с форсажной камерой (ТРДФ) определяется тремя параметр

Основные принципы управления ГТД на режимах приемистости.
Процессы приемистости и дросселирования – это перевод двигателя с режима малого газа на больший режим и с большего на меньший соответственно за определенное время. При этом необходимо обеспечить тр

Принципы построения и основные характеристики воздухозаборников.
Воздухозаборники можно сравнить с легкими человека. Так же как кислород в легких служит для жизнеобеспечения всех живых материй в организме человека, так и воздух из воздухозаборников служит для жи

Основные способы регулирования и структурные схемы САУ воздухозаборников
Система автоматического управления всережимным воздухозаборником по величине степени сжатия (СРВМУ-2АМ, УВД-2М, УВД-58М, ЭСУВ-1В и др.) состоит из устройства формирования сигнала о величине степени

Синтез структуры и параметров многосвязной САУ ГТД
Необходимость одновременного регулирования нескольких взаимосвязанных физических величин в ГТД приводит к сложной с несколькими контурами регулирования многосвязной системе регулирования. Известные

Условия обеспечения автономности многомерной САУ ГТД
Под автономностью многомерной системы понимают представление многомерной системы в виде совокупности независимых одномерных систем. Такое представление в значительной мере обусловлено тем, что на а

Основные принципы управления ЛА. Задачи управления
По органам управления ЛА классифицируют: - ЛА с аэродинамическими органами управления - ЛА с газодинамическими органами управления - ЛА с комбинированным управления

Задачи управления
ЛА – это твердое тело движение которого характеризуется 6-ю степенями свободы. Для управления ЛА нужно создать управляющие силы и моменты по 3-м взаимоперпендикулярным осям и менять их в с

Общий случай движения ЛА. Уравнения движения. Связь продольного и бокового движений
Дифференциальные уравнения движения ЛА.Математическая модель движения самолета представляет собой упрощенное описание его реального движения. При выводе уравнений движения будем по

Системы координат и параметры, определяющие положение ЛА в полете
Для определения положения ЛА в пространстве согласно ке полета ГОСТ 20058-80 применяются следующие правые прямоугольные системы координат. 1. Нормальная земная система коо

Динамика продольного движения. Уравнения движения
Рассмотрим продольное движение ЛА (рис. 4.5). Рис. 4.5. Продольное движение ле

Часные случаи продольного движения
Частные случаи продольного движения. Передаточные функции и частотные характеристики ЛА При полете с незначительным изменением высоты членами

Динамика бокового движения. Уравнения движения.
Боковое движение составляют вращения вокруг осей и

Частные случаи бокового движения. Передаточные функции.
1. Движение рыскания без крена. При таком движении продольная ось ЛА совершает колебания относительно вектора скорости, поворот которого не учитывается. Примем

Характеристики возмущенной атмосферы.
Ветровое возмущение. Существуют различные виды воздушных потоков: постоянные ветры, восходящие и нисходящие потоки, порывы ветра, завихрения и т.д.Действие порывов ветра вызывает отклонение

Законы управления автопилотов.
Под законом управления автопилота понимается требуемая зависимость между изменением выходной и входных координат. При этом под выходной понимается координата, характеризующая положение исполнительн

Требования к системам автоматического управления ЛА
САУ ЛА обеспечивает стабилизацию и управление угловыми движениями ЦМ ЛА. САУ полетом должны: 1) улучшать устойчивость и управляемость ЛА на всех режимах полета, как при ручном полуавтоматическом, т

Принцип действия каналов крена, тангажа и рыскания автопилота.
Рассмотрим статическую систему автоматического управления углом тангажа включающую контур управления угловой скоростью и контур управления углом тангажа. Передаточная функция ЛА взя

Системы управления угловой скоростью ЛА. Расчет передаточных чисел автопилота.
В системах автоматического управления полетом имеются контуры управления угловыми скоростями ЛА, служащие для формирования демпфирующих моментов и, следовательно, для улучшения качества переходного

Схемы систем автоматизированного управления при посадке.
Посадкой называется движение самолета с высоты 350–400 м до приземления и полной остановки. Посадочный маневр принято разделять на три фазы: – на первой фазе самолет выводится на

Законы управления при заходе на посадку
Движение ЛА в зоне курсового маяка Закон управления: . (13.11)

Автоматизация взлета самолета.
Взлетом называется движение самолета от момента старта на ВПП до набора безопасной высоты (так называемой условной высоты препятствий на подходах к аэродрому) и достижения безопасной скорост

Автоматическая бортовая система управления АБСУ-154. Назначение. Принцип работы. Основные характеристики.
АБСУ-154 - это автоматическая бортовая система управления, которая служит основой пилотажной части пилотажно-навигационный комплекса (ПНК-154) самолета Ту-154. Все функции АБСУ-154 выполня

Основные принципы построения адаптивных автопилотов.
Автопилоты, облржрющие свойством приспособления (адаптации) к внешним условиям, называются адаптивными или, в частности, самонастривающимися. Общая схема:

Цифровые системы управления полетом.
Рост требований к регулярности и безопасности полетов, усложнение самих объектов управления привели к появлению принципиально новых бортовых систем, основанных на цифровом управлении ВС. П

Интегрированное управление летательными аппаратами и их силовыми установками.
Интегрированное управление силовой установкой самолета является одним из аспектов системного подхода к проблеме проектирования силовой установки, заключающегося в рассмотрении ее в качестве подсист

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги