рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Кванторы

Кванторы - раздел Образование, Логические операции Функциональная Природа Предиката Влечет За Собой Введение Ещё Одного Понятия ...

Функциональная природа предиката влечет за собой введение ещё одного понятия – квантора. (quantum – от лат. «сколько») Кванторные операции можно рассматривать как обобщение операций конъюнкции и дизъюнкции в случае конечных и бесконечных областей.

Квантор общности (все, всякий, каждый, любой (all – «всякий»)). Соответствующие ему словесное выражение звучит так:

«Для всякого x Р(x) истинно». Вхождение переменной в формулу может быть связанным, если переменная расположена либо непосредственно после знака квантора, либо в области действия квантора, после которого стоит переменная. Все прочие вхождения – свободные, переход от P(x) к x(Px) или (Px) называется связыванием переменной x или навешиванием квантора на переменную x (или на предикат P) или квантификацией переменной х. Переменная, на которую навешивается квантор, называется связанной, несвязанная квантования переменная называется свободной.

Например, переменная x в предикате Р(x) называется свободной ( x – любое из М), в высказывании Р(x) переменную x называют связанной переменной.

Справедлива равносильность P(x1)P(x2)P(xn),

P(x) – предикат, определенный на множестве М={х12...х4}

Квантор существования (exist – «существовать»). Словесное выражение, соответствующее ему, звучит так: “Существует x, при котором Р(x) истинно”. Высказывание xР(x) уже не зависит от x, переменная x связана квантором .

Справедлива равносильность:

xP(x) = P(x1)P(x2)P(xn), где

P(x) - предикат, определенный на множестве М={x1,x2…xn}.

Квантор общности и квантор существования называют двойственными, иногда используется обозначение квантора ! – «существует, и притом, только один».

Ясно, что высказывание xP(x) истинно только в том единственном случае, когда Р(x) - тождественно истинный предикат, а высказывание ложно только тогда, когда Р(x) - тождественно ложный предикат.

Кванторные операции применяются и к многоместным предикатам. Применение кванторной операции к предикату P(x,y) по переменной x ставит в соответствие двухместному предикату P(x,y) одноместный предикат xP(x,y) или xP(x,y), зависящий от у и не зависящий от х.

К двухместному предикату можно применить кванторные операции по обеим переменным. Тогда получим восемь высказываний:

1. P(x,y); 2. P(x,y);

3. P(x,y); 4. P(x,y);

5. P(x,y); 6. P(x,y);

7. P(x,y); 8. P(x,y)

Пример 3. Рассмотреть возможные варианты навешивания кванторов на предикат P(x,y) – “x делится на y”, определенный на множестве натуральных чисел (без нуля) N. Дать словесные формулировки полученных высказываний и определить их истинность.

Операция навешивания кванторов приводит к следующим формулам:

- высказывания “для любых двух натуральных чисел имеет место делимость одного на другое” (или 1) все натуральные числа делятся на любое натуральное число; 2) любое натуральное число является делителем для любого натурального числа) ложные;

- высказывания “существуют такие два натуральных числа, что первое делится на второе” (1. «существует такое натуральное число x, которое делится на какое-то число y»; 2. «существует такое натуральное число y, которое является делителем какого-то натурального числа x») истинны;

- высказывание “существует натуральное число, которое делится на любое натуральное”, ложное;

- высказывание “для всякого натурального числа найдется такое натуральное, которое делится на первое” (или для всякого натурального числа найдется свое делимое), истинное;

- высказывание “для всякого натурального x существует такое натуральное число y, на которое оно делится” (или «для всякого натурального числа найдется свой делитель»), истинное;

- высказывание “существует натуральное число, которое является делителем всякого натурального числа”, истинное (таким делителем является единица).

В общем случае изменение порядка следования кванторов изменяет смысл высказывания и его логическое значение, т.е. например, высказывания P(x,y) и P(x,y) различны.

Пусть предикат P(x,y) означает, что x является матерью для y, тогда P(x,y) означает, что у каждого человека есть мать – истинное утверждение. P(x,y) означает, что существует мать всех людей. Истинность этого утверждения зависит от множества значений, которые могут принимать y: если это множество братьев и сестер, то оно истинно, в противном случае оно ложно. Таким образом, перестановка кванторов всеобщности и существования может изменить сам смысл и значение выражения.

Квантор существования можно выразить через квантор всеобщности применительно к предикату P(x), xP(x) =

Квантор общности можно выразить с помощью квантора существования.

Пусть F1(x)=yP(x,y), тогда yP(x,y)=.

 

Операции над предикатами.Все формулы логики высказываний являются частным случаем логики предикатов. Все операции логики высказываний переносятся в логику предикатов.

Отрицание предиката. Чтобы образовать отрицание предиката, начинающегося одним из знаков или , можно:

1) либо поставить знак перед всем высказыванием

2) либо

а) заменить начальный знак (или ) на противоположный

б) поставить знак перед остальной частью предиката

 

– Конец работы –

Эта тема принадлежит разделу:

Логические операции

ВВЕДЕНИЕ... М В Ломоносовговорил Математику уже затем учить надо что она ум в порядок... В настоящее время никто не будет спорить с утверждением что во всякой науке ровно столько науки сколько в ней...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Кванторы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие высказывания. Составные высказывания
Математическая логика представляет собой формальный математический аппарат, изучающий различные способы логических рассуждений. Простейшую из формальных логических теорий называют алгеброй высказыв

Таблицы истинности
Каждая формула алгебры высказываний обладает свойством превращаться в высказывание при фиксации в ней значений всех высказывательных переменных, т.е. если мы зафиксируем в формуле значения всех выс

Формулы алгебры логики
Формулы алгебры логики обозначаются большими буквами латинского алфавита A, B, C, D, … . Буквы, обозначающие высказывания, логические связки и скобки, составляют алфавит языков логических высказыва

Законы алгебры логики
Ключом к решению примеров на равносильные преобразования и упрощение формул являются основные равносильности булевой алгебры. Успешное решение примеров зависит от умелого, эффективного применения с

Равносильные преобразования
Первым шагом при решении примеров на эквивалентные преобразования является переход к булевым операциям с помощью формул: 1)

Функции алгебры логики
Понятие булевой функции, способы ее задания. Функция , определенная на множестве

Специальные представления булевых функций
Дизъюнктивные и конъюнктивные нормальные формы алгебры высказываний.Для каждой функции логики высказываний можно составить таблицу истинности. Обратная задача тоже всегда разрешима

Минимизация нормальных форм
Как было изложено выше, любая булева функция может быть представлена в виде ДНФ и КНФ. Среди этих форм найдутся такие, которые содержат меньшее число переменных, чем исходная. Дизъюнктивна

К полиному Жегалкина
Указанная выше единственность представления булевой функции полиномом Жегалкина позволяет применять разнообразные методы построения соответствующих данной функции полиномиальных выражений, заботясь

Диаграммы Эйлера-Венна
Чтобы наглядно изображать множества, английский математик Джон Венн (1834-1923) предложил использовать замкнутые фигуры на плоскости. Намного раньше Эйлер (1707-1783) для изображения отношений межд

Законы теории множеств
Приведем основные тождества так называемой алгебры множеств (будем предполагать, что используемые в тождествах множества A, B, C являются подмножествами универсального множества U). Коммут

Высказываниями
Существует тесная связь между множествами – с одной стороны, и высказываниями – с другой, а также между операциями над множествами, с одной стороны, и операциями образования составных высказываний

Соотношение между высказываниями и соответствующими им множествами истинности
Мы рассмотрели такие множества истинности составных высказываний, которые образованы посредством связок V, Λ, Ø. Все остальные связки можно определить через эти три основные

Бинарные отношения
В повседневной жизни нам постоянно приходится сталкиваться с понятием «отношения». Отношения – один из способов задания взаимосвязей между элементами множества. Унарные (одноместные) отнош

Замыкания отношений
Если отношение на множестве M не обладает тем или иным свойством, то его можно попытаться продолжить до отношения R*, которое будет им обладать. Для этого необходимо присое

Отображения и функции
Пусть заданы два множества А и В. Если для каждого элемента указан элемент , с кото

Основные определения
Алгоритмом называется точное предписание, определяющее вычислительный процесс, который ведет от варьируемых исходных данных к искомому результату, т.е. алгоритм – это совокупность

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги