рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Таблицы истинности

Таблицы истинности - раздел Образование, Логические операции Каждая Формула Алгебры Высказываний Обладает Свойством Превращаться В Высказы...

Каждая формула алгебры высказываний обладает свойством превращаться в высказывание при фиксации в ней значений всех высказывательных переменных, т.е. если мы зафиксируем в формуле значения всех высказывательных переменных, то, пользуясь определениями логических операций, мы можем вычислить значение истинности формулы.

Таблица истинности формулы алгебры высказываний содержит столько строк, сколько всевозможных наборов значений истинности переменных можно образовать. Так как каждая высказывательная переменная может принимать только два значения (0 и 1), то в случае n переменных таблица истинности содержит 2n строк.

При построении таблицы истинности наборы значений переменных располагают сверху вниз в лексикографическом порядке (каждый набор понимают как двоичную запись неотрицательного целого числа и располагают в порядке возрастания от (000…0) до (111…1)).

Если возникают трудности с использованием двоичной системы счисления, можно применить метод «последовательного половинного деления столбцов» - столбец первой переменной делят пополам и заполняют верхнюю половину нулями, а нижнюю половину – единицами, затем каждую половину второго столбца делят пополам и опять заполняют полученные половины нулями и единицами, и т.д. Последовательность такого заполнения приведена на рис. 1.

Затем в соответствии с порядком действий последовательно заполняют столбцы значений подформул, из которых образуется формула. Последним заполняется столбец значений истинности формулы.

 

x1 x2 x3
   
   
x1 x2 x3
 
 
 
 
x1 x2 x3

 

рис.1

 

Пример 1. Построить таблицу истинности формулы: ï.

Решение. Порядок действий при построении таблицы исттинности совпадает с порядком столбцов таблицы 9.

 

 

Таблица 9.

ï (ï) (ï)

– Конец работы –

Эта тема принадлежит разделу:

Логические операции

ВВЕДЕНИЕ... М В Ломоносовговорил Математику уже затем учить надо что она ум в порядок... В настоящее время никто не будет спорить с утверждением что во всякой науке ровно столько науки сколько в ней...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Таблицы истинности

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие высказывания. Составные высказывания
Математическая логика представляет собой формальный математический аппарат, изучающий различные способы логических рассуждений. Простейшую из формальных логических теорий называют алгеброй высказыв

Формулы алгебры логики
Формулы алгебры логики обозначаются большими буквами латинского алфавита A, B, C, D, … . Буквы, обозначающие высказывания, логические связки и скобки, составляют алфавит языков логических высказыва

Законы алгебры логики
Ключом к решению примеров на равносильные преобразования и упрощение формул являются основные равносильности булевой алгебры. Успешное решение примеров зависит от умелого, эффективного применения с

Равносильные преобразования
Первым шагом при решении примеров на эквивалентные преобразования является переход к булевым операциям с помощью формул: 1)

Функции алгебры логики
Понятие булевой функции, способы ее задания. Функция , определенная на множестве

Специальные представления булевых функций
Дизъюнктивные и конъюнктивные нормальные формы алгебры высказываний.Для каждой функции логики высказываний можно составить таблицу истинности. Обратная задача тоже всегда разрешима

Минимизация нормальных форм
Как было изложено выше, любая булева функция может быть представлена в виде ДНФ и КНФ. Среди этих форм найдутся такие, которые содержат меньшее число переменных, чем исходная. Дизъюнктивна

К полиному Жегалкина
Указанная выше единственность представления булевой функции полиномом Жегалкина позволяет применять разнообразные методы построения соответствующих данной функции полиномиальных выражений, заботясь

Диаграммы Эйлера-Венна
Чтобы наглядно изображать множества, английский математик Джон Венн (1834-1923) предложил использовать замкнутые фигуры на плоскости. Намного раньше Эйлер (1707-1783) для изображения отношений межд

Законы теории множеств
Приведем основные тождества так называемой алгебры множеств (будем предполагать, что используемые в тождествах множества A, B, C являются подмножествами универсального множества U). Коммут

Высказываниями
Существует тесная связь между множествами – с одной стороны, и высказываниями – с другой, а также между операциями над множествами, с одной стороны, и операциями образования составных высказываний

Соотношение между высказываниями и соответствующими им множествами истинности
Мы рассмотрели такие множества истинности составных высказываний, которые образованы посредством связок V, Λ, Ø. Все остальные связки можно определить через эти три основные

Бинарные отношения
В повседневной жизни нам постоянно приходится сталкиваться с понятием «отношения». Отношения – один из способов задания взаимосвязей между элементами множества. Унарные (одноместные) отнош

Замыкания отношений
Если отношение на множестве M не обладает тем или иным свойством, то его можно попытаться продолжить до отношения R*, которое будет им обладать. Для этого необходимо присое

Отображения и функции
Пусть заданы два множества А и В. Если для каждого элемента указан элемент , с кото

Кванторы
Функциональная природа предиката влечет за собой введение ещё одного понятия – квантора. (quantum – от лат. «сколько») Кванторные операции можно рассматривать как обобщение операци

Основные определения
Алгоритмом называется точное предписание, определяющее вычислительный процесс, который ведет от варьируемых исходных данных к искомому результату, т.е. алгоритм – это совокупность

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги