рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Задача 10

Задача 10 - раздел Математика, ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. Определить Интервал Сходимости Степенного Ряда: ...

Определить интервал сходимости степенного ряда: .

Ряд , члены которого являются функциями от переменной , называется функциональным.

При различных значениях из функционального ряда получаются различные числовые ряды, которые могут быть сходящимися или расходящимися.

Совокупность значений , при которых функциональный ряд сходится, называется его областью сходимости.

Из всех функциональных рядов простейшими и наиболее употребительными являются степенные ряды вида

 

(1)

 

или более общего вида

(2)

Областью сходимости всякого степенного ряда является один интервал числовой оси, симметричный относительно точки (для ряда 1) или (для ряда 2), который может быть закрытым, открытым или полуоткрытым.

Для определения области сходимости функциональных рядов обычно вначале используется признак Даламбера, а затем те значения , для которых этот признак не решает вопроса о сходимости ряда (), исследуются особо, посредством других признаков сходимости рядов.

Решение. По известному члену ряда , заменяя в нем через , находим следующий за ним член :

 

; .

 

Далее, используя признак Даламбера, ищем предел

 

 

и определяем, при каких значениях этот предел будет меньше единицы, т.е. решаем неравенство : ; .

Согласно признаку Даламбера, при любом значении из найденного интервала данный ряд сходится (абсолютно), а при расходится.

Граничные точки этого интервала, для которых и признак Даламбера не решает вопроса о сходимости ряда, исследуем особо.

При получим числовой ряд с положительными членами , который расходится, что следует из сравнения его с расходящимся гармоническим рядом . (Каждый член исследуемого ряда больше соответствующего члена гармонического ряда.)

Приполучим числовой знакочередующийся ряд , который сходится, согласно признаку Лейбница. (Члены этого ряда убывают по абсолютному значению, стремясь к нулю.)

Следовательно, интервалом сходимости данного степенного ряда является полуоткрытый интервал .

 

 

– Конец работы –

Эта тема принадлежит разделу:

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ.

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ... Кафедра высшей математики и информатики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Задача 10

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Практические занятия
Неопределенный интеграл. Использование таблиц интегралов. Замена переменной интегрирования. Методы интегрирования по частям. Определенный интеграл. Формула Ньютона-Лейбни

Задача 1
Вычислить неопределенные интегралы по частям. 1. 16.

Задача 2
Вычислить неопределенные интегралы методом замены переменной.   1.

Задача 3
  Вычислить определенные интегралы.   1. 6.

Задача 4
Найти общее решение уравнений с разделяющимися переменными.   1.

Задача 5.
Найти общее решение линейных уравнений или уравнений Бернулли.   1.

Задача 6
Найти общее решение дифференциальных уравнений в полных дифференциалах.   1.

Задача 7
Найти общее решение дифференциальных уравнений, допускающих понижение порядка.   1.

Задача 8
Найти общее решение линейных, неоднородных дифференциальных уравнений с постоянными коэффициентами.   1.

Задача 9
Исследовать на сходимость числовые ряды, используя признаки Даламбера (№1–6), Коши (№7–14), Лейбница (№15–24), сравнения (№25–30).   1.

Задача 10
Определить область сходимости функциональных рядов (№1–15); для степенных рядов (№16–30) найти радиус сходимости и оценить поведение рядов на концах интервала сходимости.  

Задача 11
Разложить в степенной ряд Тейлора следующие функции:   1. в окрестности точки

Задача 1
Вычислить неопределенный интеграл по частям: . Данный метод основан на использовании формулы интегрирования по частям.

Задача 2
Вычислить интеграл методом замены переменной: . Формула замены переменной в неопределенном интеграле имеет вид

Задача 3
Вычислить определенный интеграл: .   Для вычисления определенного интеграла используют формулу Ньютона–Лей

Задача 4
Найти общее решение уравнения с разделяющимися переменными:     Уравнение первого

Задача 5.
Найти общее решение линейного уравнения: .   Уравнение вида

Задача 6
Найти общее решение дифференциального уравнения в полных дифференциалах: .   Если в уравнении 1-г

Задача 7
Найти общее решение дифференциального уравнения, допускающего понижение порядка: . 1) Уравнение

Задача 8
Найти общее решение линейного, неоднородного дифференциального уравнения с постоянными коэффициентами:   .

Задача 9
Исследовать на сходимость числовой ряд: . Числовым рядом называется выражение

Задача 11
Разложить в степенной ряд Тейлора функцию: при . &

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги