рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ВАРИАЦИОННЫЙ РЯД, ПОЛИГОН И ГИСТОГРАММА

ВАРИАЦИОННЫЙ РЯД, ПОЛИГОН И ГИСТОГРАММА - раздел Полиграфия, Технологии и дизайна Рядами Распределения Называются Числовые Ряды, Характери...

Рядами распределения называются числовые ряды, характеризующие структуру совокупности по некоторому признаку. Ряд распределения может быть получен в результате структурной группировки. Ряд распределения, образованный по количественному признаку (вариационный ряд), может быть дискретным (признак принимает ограниченное число возможных значений, например 2,3,4,5) или интервальным (значения признака выражены вещественными числами или число возможных значений признака достаточно велико).

Характеристиками ряда являются:

xiварианта (отдельное возможное численное значение признака)

(i=1,k);

ni частота (численность отдельных групп);

n − общее число элементов совокупности;

qi частость (доля отдельных групп во всей совокупности).

При этом .

Вариационный ряд оформляется в виде таблицы, где в первой графе указываются варианты (интервалы) значений признака, а в следующих − частота и частость.

Ряд распределения в целом характеризует структуру совокупности по данному признаку. Однако могут использоваться и кумулятивные ряды, т.е. ряды накопленных частот (частостей).

Накопленная частота (частость) − это число (доля) элементов совокупности, у которых значения признака не превышают данного.

Обозначим

F(x) − накопленная частота для данного значения x;

G(x) − накопленная частость для данного значения x.

Эти характеристики обладают следующими свойствами:

Рассмотрим интервал с номером i : [xi xi+1]

Накопленная частота на конец i-го интервала определяется по формуле

Вариационный ряд можно изобразить в виде графика.

Изображением дискретного ряда является полигон. При его построении по оси абсцисс откладываются варианты (xi), а по оси ординат − частоты или частости − fi. Затем точки с координатами (xi;fi) последовательно соединяются отрезками прямой.

Изображением интервального ряда является гистограмма. При ее построении по оси абсцисс откладываются интервалы ряда. Над осью абсцисс строится прямоугольник, основанием которого является интервал, а высотой − значение частоты или частости.

Изображением ряда накопленных частот является кумулята. Накопленные частоты откладываются по оси ординат для границ интервалов и соединяются отрезками прямых.

 

Пример 1. Распределение квартир дома по числу жителей приведено в таблице. Построить полигон и кумуляту.

 

Число живущих в квартире xi Число квартир (частота) ni Накопленная частота   F(xi)
ВСЕГО  

 

Пример 2. Распределение банков по степени риска приведено в таблице. Построить гистограмму и кумуляту.

 

Степень риска, % Доля банков (частость) qi Накопленная частость   G(xi)
0-10 0,61 0,61
10-20 0,04 0,65
20-30 0,35 1,00
ВСЕГО 1,00  

 

– Конец работы –

Эта тема принадлежит разделу:

Технологии и дизайна

Государственное образовательное учреждение... высшего профессионального образования Санкт Петербургский государственный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ВАРИАЦИОННЫЙ РЯД, ПОЛИГОН И ГИСТОГРАММА

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОРГАНИЗАЦИЯ И ВИДЫ СТАТИСТИЧЕСКОГО НАБЛЮДЕНИЯ
В любом статистическом исследовании можно выделить несколько этапов. Статистическое изучение тех или иных явлений требует наличия информации об этих явлениях, Поэтому первый этап, начало с

ГРУППИРОВКА СТАТИСТИЧЕСКИХ ДАННЫХ
  В результате проведения статистического наблюдения получают данные о признаках каждой обследованной единицы статистической совокупности. Однако эти массивы данных собирают не для то

Средняя арифметическая
- для не сгруппированных данных ,   - для сгруппированных данных

СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ ВАРИАЦИИ
1. Выборочная дисперсия () – это среднее значение квадратов отклонений индивиду

АБСОЛЮТНЫЕ И ОТНОСИТЕЛЬНЫЕ СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ. ВЫЧИСЛЕНИЕ СРЕДНИХ ЗНАЧЕНИЙ ОТНОСИТЕЛЬНЫХ ПОКАЗАТЕЛЕЙ.
Под абсолютными показателями в статистике понимают исходные показатели статистического наблюдения (объем продукции, количество населения и т. д.). Они могут быть как моментными (на определенный мом

АНАЛИЗ ВРЕМЕННЫХ РЯДОВ
  Временной ряд представляет собой ряд числовых значений какого-либо показателя в последовательные моменты или периоды времени. Числовые значения, составляющие временной ряд, называют

Формулы для расчета показателей представлены в таблице.
Показатели динамики   Базисные Цепные Абсолютный прирост Ai=yi

Предположим, что имеет место линейная зависимость т. е.
. (1) Найдем оценки коэффициентов a и b по фактическим данным об уровнях ряда (

Первое уравнение системы (3) можно преобразовать к виду
или

ОШИБКИ ОЦЕНКИ ХАРАКТЕРИСТИК ГЕНЕРАЛЬНОЙ СОВОКУПНОСТИ ПО ВЫБОРКЕ
  Часто по выборке определяется среднее значение какого-либо признака − (выборочное

Среднее квадратичное отклонение оценок характеристик генеральной совокупности по выборке
  1. Для оценки среднего значения генеральной совокупности по выборке ,

Предельные ошибки оценок характеристик генеральной совокупности
  Для решения практических задач необходимо знать не только среднюю квадратичную, но и предельную ошибку с гарантирующим ее уровнем доверительной вероятности. Формулы для определения

Определение численности выборки
  Разрабатывая программу выборочного наблюдения, задают величину допустимой ошибки D и доверительную вероятность Р. Неизвестным является тот минимальный объем выборки n, который долже

Парная линейная регрессия
  Следующий этап исследования корреляционной связи заключается в том, чтобы описать зависимость признака-результата от признака-фактора некоторым аналитическим выражением. &n

Индивидуальные индексы
В статистике под индексом понимают относительную величину, характеризующую результат сравнения двух уровней одноименных показателей. Каждый индекс включает два вида данных: данные текущего

Общие (агрегатные) индексы
Общие (агрегатные) индексы строятся с учетом изменения всех элементов статистической совокупности.     А) Агрегатный индекс товарооборота  

Взаимосвязь агрегатных и индивидуальных индексов
Агрегатный индекс связан с индивидуальными индексами . При этом агрегатный индекс является некоторой средней из индивидуальных индексов с соответствующими весами. Предположим, что известны

Агрегатный индекс средних величин
Рассмотрим агрегатный индекс средних величин на примере индекса средней цены  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги