рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ - раздел Полиграфия, Хроматографические методы. Общая характеристика методов Абсолютое Большинство Веществ Живой И Неживой Природы И Синтетических Веществ...

Абсолютое большинство веществ живой и неживой природы и синтетических веществ, используемых в производстве самых разнообразных продуктов питания и непродовольственных товаров, представляют собой не индивидуальные химические соединения, а сложные многокомпонентные смеси веществ. В процессе получения готовой продукции чаще всего состав исходного сырья изменяется: в результате технологических воздействий некоторые компоненты частично или полностью исчезают, появляются новые вещества.

Должное качество продукции достигается, как правило, при достаточно строгом компонентном составе получаемой продукции. К сожалению, большинство современных физических и физико-химических методов анализа, используемых для контроля компонентного состава вещества, дает аддитивную величину измеряемого аналитического сигнала, которая слагается из его величин, образуемых отдельными компонентами смеси, зачастую имеющими различную химическую природу и различное влияние на качество продукции. Это ограничивает использование таких методов для строгого контроля компонентного состава продукции и приводит к необходимости использовать те или иные методы разделения смесей веществ.

Цвет М.С. (1872-1919 г.г.)
Особенно большие трудности возникают, если все компоненты разделяемой смеси образуют одну фазу. В этом случае необходимо или изменять агрегатное состояние части компонентов смеси, или добиваться изменения фазового равновесия или кинетики процесса разделения. Например, в таких методах разделения, как экстракция и ректификация, вещества, входящие в смесь, переходят через границу раздела фаз в обоих направлениях, стремясь к установлению равновесия. Эффективность разделения значительно повышается, если процесс перехода вещества из одной фазы в другую с установлением равновесия многократно повторяется.

Еще более эффективно смеси веществ разделяются, если разделение смеси производить так, чтобы одна из фаз была подвижной и перемещалась отностельно другой – неподвижной. В этом случае, как и при установлении фазового равновесия, молекулы веществ, входящих в смесь, на выходе из неподвижной фазы возвращаются в нее, однако вследствие движения подвижной фазы попадают не в прежний участок объема неподвижной фазы, а в новый, ближайший по направлению движения подвижной фазы, объем. Многократное повторение элементарных актов фазовых переходов, большая поверхность раздела фаз и относительно малая толщина взаимодействующих слоев фаз обеспечивает высокую эффективность разделения многокомпонентных смесей веществ, часто обладающих близкими свойствами.

Эти условия в большей мере выполняются в методе разделения смеси веществ, получившего название хроматографического и в настоящее время широко используемого на практике не только в качестве метода разделения, но и метода анализа сложных многокомпонентных смесей веществ.

 

Основы хроматографического метода были сформулированы в 1903 году ботаником М. . Цветом. Разработанный метод предназначалcя для разделения окрашенных биохимических объектов. Первые опыты по хроматографии, проведенные М. Цветом на смесях растительных пигментов - хлорофиллинов и ксантофиллинов, состояли в использовании стеклянных колонок, заполненных мелом. При вымывании пигментов петролейным эфиром они перемещались вдоль колонки, разделяясь при этом на кольца разного цвета. Результаты этих экспериментов были опубликованы М. Цветом в статье «О новой категории адсорбционных явлений и о применении их к биохимическому анализу».


Характеризуя принципы предложенного им метода, М. Цвет писал: «При фильтрации смешанного раствора через столб адсорбента пигменты расслаиваются в виде отдельных различно окрашенных зон. Подобно световым лучам в спектре, различные компоненты сложного пигмента закономерно распределяются друг за другом в столбе адсорбента и становятся доступными качественному определению. Такой расцвеченный препарат я назвал хроматограммой, а соответствующий метод анализа - хроматографическим методом».

 

В этой формулировке М. Цвет дал достаточно четкое определение адсорбционной хроматографии, основанной на различии компонентов анализируемой смеси по сродству к выбранному адсорбенту. Он высказал идею о возможности применения для хроматографического разделения смеси веществ различий и в других свойствах компонентов, в частности в растворимости труднорастворимых осадков. Однако предложенный М. Цветом метод его современниками не был оценен и длительное время не находил использования.

Расцвет и бурное развитие хроматографии начались с 1931 г., когда уже были разработаны основы теории адсорбции и ионного обмена и синтезированы новые неорганические и органические сорбенты. Развитие хроматографии связано с именами Р. Куна, Е. Ледерера, А. Винтерштейна, А. Измайлова. Усилиями этих и многих других ученых были разработаны разнообразные варианты хроматографического анализа: тонкослойная (1938 г., Н. Измайлов), бумажная (1941 г., А. Мартин, Р. Синдж), газоадсорбционная (1940), газожидкостная (1952 г., А. Мартин), капиллярная (1957 г., М. Голей), высокоэффективная жидкостная (60-е г. XIX в.), эксклюзионная (60-е г. XIX в.), ионная хроматография (1970 г., Х. Смолл, Т. Стивенс).

Однако любые варианты хроматографии, как бы далеки друг от друга они не были по внешним признакам, основываются на одном общем принципе, состоящем в распределении компонентов разделяемой смеси между двумя фазами, одна из которых неподвижна и имеет развитую поверхность, а вторая – подвижная – представляет собой поток, проходящий через слой неподвижной фазы.

Неподвижной (стационарной) фазой служит твердое вещество (сорбент), пленка жидкости, нанесенная на твердое вещество (носитель), гелеобразное вещество, вещество, способное к реакциям ионного обмена или обмена другого типа. Подвижная фаза представляет собой жидкость или газ, протекающий через неподвижную фазу.

Подвижная фаза (газ-носитель или жидкость) непрерывно пропускается через неподвижную фазу (колонка, сорбент и.т.д.). В этот поток дозирующим устройством вводится импульсно анализируемая смесь, которая должна быть газообразной или испаряться в дозаторе в случае газовой хроматографии, или растворяться в подвижной фазе в случае жидкостной.

В процессе хроматографирования вещества, которые входят в анализируемую смесь и помещаются в большинстве случаев в заполненную неподвижной (стационарной) фазой стеклянную, металлическую или пластиковую трубку, называемую хроматографической колонкой, подвергаются одновременному воздействию двух факторов: поток подвижной фазы перемещает их по колонке, а неподвижная фаза тормозит это движение. Торможение (удерживание) каждого компонента различное и пропорционально силе его взаимодействия с неподвижной фазой. В результате этого входящие в анализируемую пробу индивидуальные вещества, слабее взаимодействующие с неподвижной фазой, перемещаются по колонке быстрее, чем более сильно взаимодействующие вещества, и в конечном итоге при подборе оптимальных условий разделения каждый компонент анализируемой смеси концентрируется в колонке в чистом виде, отдельно от других компонентов, перемещается и выходит из колонки отдельно.

Основные элементы хроматографического процесса рассмотрим на примере разделения бинарной смеси в условиях колоночной жидкостной адсорбционной хроматографии. Представим себе трубку, заполненную простым адсорбентом (колонку), через которую непрерывно течет растворитель (рис. 1.)

 

Адсорбент (сорбент, наполнитель колонки) удерживается в колонке фильтрами, он неподвижен и поэтому называется неподвижной фазой. Растворитель, перемещающийся относительно сорбента, называется подвижной фазой (в некоторых случаях элюентом). Введем в верхнюю часть колонки по одной молекуле соединений - сорбатов, обозначенных далее Х и У (рис. 2). При движении вдоль колонки эти молекулы будут диффундировать внутри пор сорбента и, в результате межмолекулярных взаимодействий того или иного типа, адсорбироваться на поверхности неподвижной фазы. Естественно, что на практике в колонку не вводят единичные молекулы и поэтому данная картинка предельно упрощает реальную ситуацию. Если в колонку введены хотя бы несколько молекул разного вида, то обнаружим, что средние скорости перемещения молекул X и У по-прежнему различны. Помимо этого, скорости перемещения отдельных молекул каждого вида отклоняются в ту или иную сторону от среднего для данного вида значения. Молекулы сорбатов , первоначально введенные в колонку в виде мгновенного импульса, выходят из нее более продолжительно, это объясняется тем, что в ходе хроматографической миграции каждое индивидуальное вещество перемещается в направляющей системе в ограниченном (постепенно изменяющемся) объеме. Эти объемы и соответствующие им участки длины колонки, равно как пятна и полосы на хроматографической пластинке, будем ниже именовать. хроматографическими зонами, или просто зонами. Неидентичность скоростей перемещения одинаковых молекул в хроматографии называется размываниемОно связано с рядом явлений в колонке, которые подробнее рассмотрим позднее. Это нежелательное явление приводит к тому, что среди молекул У могут находиться также молекулы Х, скорость которых близка к скорости наиболее "быстрых" молекул У. В результате зоны Х и У могут частично наложиться одна на другую и разделение окажется неполным.

С помощью хроматографии могут быть решены следующие задачи:

1) разделены сложные смеси веществ на отдельные компоненты;

2) установлена идентичность и однородность химических соединений;

3) определен количественный состав сложных смесей или количественное содержание отдельных компонентов;

4) установлена молекулярная структура соединений.

В отличие от других методов, основанных на распределении компонентов между фазами, таких как экстракция и сорбция, хроматография - это динамический процесс, состоящий из многократных актов сорбции-десорбции компонентов, так как он происходит в потоке подвижной фазы. Такой динамический характер обеспечивает достижение значительно более высокой эффективности хроматографии по сравнению с сорбцией и экстракцией в статических условиях.

В основу классификации многочисленных хроматографических методов положены следующие признаки: агрегатное состояние подвижной и неподвижной фаз, механизм взаимодействия сорбент – сорбат, форма слоя сорбента (техника выполнения), цель хроматографирования.

В зависимости от агрегатного состояния подвижной фазы выделяют:

По механизму взаимодействия сорбента и сорбата различают несколько видов хроматографии:

- адсорбционная хроматография основана на различной способности компонентов анализируемой смеси адсорбироваться твердым сорбентом;

- распределительная хроматография – на различии в растворимости разделяемых веществ в неподвижной фазе (газовая хроматография) или на различии в растворимости веществ в подвижной и неподвижной жидких фазах;

- ионообменная хроматография – на разной способности веществ к ионному обмену;

- эксклюзионная (ситовая) хроматография – на различии в размерах и форме молекул разделяемых веществ;

- аффинная хроматография – на специфических взаимодействиях, характерных для некоторых биологических и биохимических объектов (антитело и антиген, фермент и его субстрат или ингибитор, гормон и соответствующий рецептор);

- осадочная хроматография – на образовании отличающихся по растворимости осадков разделяемых веществ с сорбентом;

- адсорбционно-комплексообразовательная хроматография – на возникновении координационных соединений разной устойчивости в фазе или на поверхности сорбента.

– хемосорбционная хроматография – за счет образования водородной связи, проявления химического сродства и др.

Следует подчеркнуть, что классификация хроматографических методов по механизму разделения весьма условна: часто процесс разделения протекает сразу по нескольким механизмам.

Таблица 3

– Конец работы –

Эта тема принадлежит разделу:

Хроматографические методы. Общая характеристика методов

Хроматографические методы Общая характеристика методов.. Характеристики хроматографического разделения компонентов анализируемой.. Основные закономерности сорбционных процессов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Компонентов анализируемой смеси
Результатом хроматографического разделения исследуемой пробы является хроматограмма. Различают внутреннюю и внешнюю хроматограммы. Внутренняя хроматограмма – это распределение разделен

Изотермы адсорбции
Изотермой адсорбции называется количественная зависимость между величиной адсорбции и равновесной концентрацией адсорбируемого вещества. В общем виде уравнение изотермы адсорбции записывае

Изотермы адсорбции и форма фронтов зон
Рассмотрим вопросы применения теории адсорбции к описанию хроматографических разделений. Основными задачами теории адсорбции в приложении к хроматографии являются получение ответов на д

Газовая хроматография
Газовая хроматография - метод разделения летучих соединений. Поскольку в процессе разделения анализируемые вещества должны находиться в газообразном состоянии, что достигается

Подвижная фаза. Характеристика основных представителей
При выборе газа-носителя следует учитывать, что природа газа-носителя оказывает влияние как на характеристики разделения компонентов анализируемой смеси в хроматографической колонке, так и на парам

Значения инкрементов функциональных групп и связей
Группа/связь ОМЧ-инкремент - СН2 - ОН = СН – ОН

Величины относительных молярных поправочных коэффициентов
бензол 1.00 метанол 2.46 метан 1.23 этанол 1.77

Величины относительных коэффициентов захвата электронов
Класс соединений Кэз Примеры алканы, алкены, алкины, алифатические эфиры и диены 0.01

Фотоионизационный детектор (ДФИ)
Детектор был предложен в 1968 г., имел нестабильные характеристики и почти не применялся. В конце 70-х начале 80-х годов началась новая эра в развитии ДФИ, связанная, главным образом, с его примене

Силы дисперсионного взаимодействия
Энергия дисперсионного взаимодействия двух сферических частиц описывается уравнением Лондона: , (84) где k - коэффициент пропорциональности, зависящий от потенциала ионизац

Силы ориентационного взаимодействия
Наконец, для двух частиц, обладающих дипольными моментами, возникает ориентационное взаимодействие, энергия которого описывается уравнением: . (87) Под взаимодействующими частицам

Силы полухимического и химического взаимодействий
Еще более прочные адсорбционные связи полухимического характера образуются либо при возникновении водородных связей, либо за счет образования комплексов переноса заряда. Образование водоро

Углеродные адсорбенты
Основными представителями этой группы адсорбентов являются: · графитированная термическая сажа; · активированный уголь; · углеродные молекулярные сита;

Оксид алюминия
Оксид алюминия является весьма термостойким и механически прочным адсорбентом; его удельная поверхность составляет около 200 м2/г. Из-за наличия кислотных и основных (по Льюису)

Органические сорбенты
Наибольшее применение получили пористые сополимеры стирола и дивинилбензола. Эти материалы получают суспензионной полимеризацией мономерных винильных производных (стирола, этилбензола), к которым д

Диатомовые носители
Исходным материалом для носителей служит светло-серое или красновато-коричневое аморфное вещество, представляющее собой обломки панцирей микроскопических диатомовых водорослей – диатомит.

Шкала относительной полярности неподвижных жидких фаз
Неподвижная фаза Р Неподвижная фаза Р сквалан диэтилоксалат

Неароматические углеводороды
Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают большими (по

Силиконы
Диметил- и метилфенилполисилоксаны относятся к числу наиболее часто применяемых неподвижных жидких фаз. Это объясняется несколькими причинами. Силиконы можно применять как при очень низких (

Фенилсиликоны
Наличие фенильных групп в фенилсиликонах приводит к усилению взаимодействия с ароматическими соединениями. Несколько более высокие величины удерживания характерны для полярных соединений. Отличие о

Спирты, эфиры и производные углеводов
Алифатические углеводороды очень плохо растворяются в неподвижных фазах такого типа и поэтому селективно отделяются от других органических соединений. Однако разделение самих гомологов парафинов не

Полигликоли
Эти неподвижные фазы плохо растворяют алифатические углеводороды, но обладают некоторой селективностью для отделения н-парафинов от изопарафинов и насыщенных углеводородов от ненасыщенных. Селектив

Сложные эфиры
Эфиры карбоновых и фосфорных кислот содержат в карбоксильных и фосфатных группах атомы кислорода, способные к образованию водородной связи. Поэтому при применении эфирных неподвижных фаз наблюдаютс

Жидкостная хроматография
Жидкостная хроматография - это метод разделения и анализа сложных смесей веществ, в котором подвижной фазой служит жидкость. Он применим для разделения более широкого круга

Характеристики растворителей, используемых в жидкостной хроматографии
Растворитель Индекс полярности Элюирующая сила (SiO2) Коротковолновая граница прозрачности Фторал

Способы борьбы с пульсациями.
1. Применение демпфирующих устройств. Это спиральные трубки специального профиля из нержавеющей стали, включенные последовательно или параллельно в систему между насосом и дозатором

Техника эксперимента в ТСХ
Активация пластин.Для повышения точности анализов рекомендуется проводить активацию пластин. Это связано с тем, что адсорбционная способность силикагеля и оксида алюминия уменьшает

Сверхкритическая флюидная хроматография
  В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид – вещество, находящееся в сверхкритическом состоянии и имеющее показатели, промежуточны

Важнейшие характеристики газов, сверхкритических флюидов и жидкостей
Характеристика Газы Сверхкритические флюиды Жидкости Плотность, г/см3 0,6 10–3

Критические величины для подвижных фаз в СФХ
Флюид Температура Тс, оС Давление рс, Па Плотность dc, г/см

Принятые термины и сокращения
Время миграции (tм) - время, необходимое компоненту для прохождения им эффективной длины капилляра (Lэфф) от зоны ввода пробы (начала капилляра)

Физико-химические основы метода капиллярного электрофореза
Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора

Капилляры
В системах КЭ используют капилляры из кварца, прозрачного в УФ-области спектра, с внешним полиимидным защитным покрытием. В случае детектирования внутри капилляра (on-line)

Источники высокого напряжения
Источники напряжения обеспечивают подачу постоянного напряжения в диапазоне от –25 до +25 кВ. Максимально допустимый ток в капилляре не должен превышать 200 мкА. В отношении ве

Ввод пробы
Типичный объем вводимой пробы в КЭ составляет 1–20 нл. Общепринято заполнять пробой не более 2 % объема капилляра, чтобы изначально не создавать широкую зону компонентов и обеспечить достаточное вр

Детекторы
Характеристики методов детектирования, используемых в КЭ, представлены в табл. 2. Указанные пределы детектирования позволяют оценить чувствительность того и

Чувствительность метода
Основным способом детектирования в КЭ является фотометрический, чувствительность которого не всегда достаточна, поскольку детектирование происходит в слое малого внутреннего

Качественный и количественный анализ
Для качественного и количественного анализа в КЭ обязательно проводят градуировку системы путем анализа нескольких смесей известного состава. Результатом градуировки являютс

Количественная обработка результатов анализа
Для количественного определения необходимо выбрать метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта

Объекты для анализа методом КЭ. Подготовка пробы
Первые аналитические приложения КЭ были связаны с разделением заряженных компонентов: наиболее подходящими оказались неорганические катионы и анионы, а также карбоновые кислоты. В биотехнологии КЭ

Особенности методики, практические рекомендации
Здесь будет рассмотрен вариант одновременного определения ряда катионов и анионов с использованием прибора «Капель-103РЕ». Для определения к

Количественный анализ
Количественная интерпретация хроматограмм является одним из наиболее ответственных заключительных этапов хроматографического анализа. Задачами количественной интерпретации хроматогр

Параметр h
Если проанализировать влияние возможных отклонений температуры колонки и скорости потока газа-носителя от средних значений, соизмеримых по длительности с продолжительностью регистрации пика на усто

Параметр hl
Влияние изменения условий процесса хроматографического разделения на параметр hl сказываются следующим образом: · флуктуации температуры при работе с обоими видами детекторов

Параметр А
Влияние изменения условий хроматографических разделений на параметр А (площадь пика) сводятся к следующему: · флуктуации температуры не искажают площадь пика при работе с дет

Методы триангуляции
Пик рассматривают как треугольник и площадь его рассчитывают как площадь треугольника. Известны три метода триангуляции (triangle – треугольник). Эти методы приближенные, поскольку площадь пика апп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги