рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Газовая хроматография

Газовая хроматография - раздел Полиграфия, Хроматографические методы. Общая характеристика методов Газовая Хроматография - Метод Разделения Летучих Соедине...

Газовая хроматография - метод разделения летучих соединений. Поскольку в процессе разделения анализируемые вещества должны находиться в газообразном состоянии, что достигается в большинстве случаев путем подъема температуры до соответствующего уровня, газовой хроматографией могут быть проанализированы газообразные, жидкие и твердые многокомпонентные смеси, содержащие вещества с молекулярной массой, как правило, ниже 400, удовлетворяющие определенным требованиям, главные из которых - достаточная летучесть, термостабильность, инертность в условиях разделения. Быстрое и полное разделение можно провести, если упругость паров анализируемых веществ при рабочей температуре колонки составляет не менее 1 мм рт.ст. Количественно определить содержание того или иного компонента анализируемого вещества можно только, если вещество термостойко, т. е. испаряется в дозаторе (испарителе) колонки и элюируется из нее без разложения или др. превращений. Если разложение вещества происходит, на хроматограмме появляются трудноидентифицируемые ложные пики продуктов превращения. Инертность анализируемого вещества состоит в том, что оно не должно образовывать прочных соединений с адсорбентом или устойчивых сольватов при растворении в неподвижной жидкой фазе, а также реагировать с материалами, из которых изготовлены детали хроматографа.

Отличительной особенностью газовой хроматографии от других методов хроматографических разделений является то, что используемая подвижная фаза должна обязательно находится в газообразном состоянии и выполнять роль газа-носителя, перемещающего разделяемые соединения по колонке. В качестве газов-носителей могут быть использованы индивидуальные газы, газообразные соединения или смеси газов и газообразных соединений.

Характерными особенностями газовой хроматографии являются:

· Высокая разделительная способность: по своим возможностям анализа многокомпонентных смесей газовая хроматография не имеет конкурентов. Ни один другой метод не позволяет анализировать фракции нефти, состоящие из сотен компонентов, в течение одного часа.

· Универсальность: разделение и анализ самых различных смесей – от низкокипящих газов до смесей жидких и твердых веществ с темпе-ратурой кипения до 500 оС и выше – характеризует универсальность метода. В нефтехимической и газовой промышленности 90-100 % всех анализов можно выполнять методом газовой хроматографии.

· Высокая чувствительность: высокая чувствительность метода

обусловлена тем, что применяемые детектирующие системы позволяют надежно определять концентрации 10-8 – 10-9 мг/мл. Используя методы концентрирования и селективные детекторы, можно определять микропримеси с концентрациями до 10-10 %.

· Экспрессность: экспрессность газовой хроматографии подчеркивается тем, что продолжительность разделения в большинстве случаев составляет 10-15 минут, иногда при разделении многокомпонентных смесей 1-1.5 часа. Однако за это время анализируется несколько десятков или сотен компонентов. В некоторых специальных случаях время разделения может быть меньше одной минуты.

· Легкость аппаратурного оформления: газовые хроматографы относительно дешевы, достаточно надежны, имеется возможность полной автоматизации процесса анализа.

· Малый размер пробы: газовая хроматография по существу метод микроанализа, поскольку для анализа достаточно пробы в десятые доли мг.

· Высокая точность анализа: погрешность измерений 5 % относительных легко достигается практически на любой газохроматографи-ческой аппаратуре. В специальных условиях достигается погрешность 0.001-0.002 % относительных.

Следует отметить и существующие ограничения метода газовой хроматографии:

· невозможность разделения и анализа смесей нелетучих соединений;

· осложнения при разделении и анализе термически нестабильных соединений;

невозможность разделения и анализа соединений, способных к диссоциации в анализируемых растворах (разделение ионов)

 

3.2. ГАЗОВЫЙ ХРОМАТОГРАФ. ПРИНЦИПИАЛЬНАЯ СХЕМА

Любая газохроматографическая установка обязательно должна содержать следующий перечень узлов:

· источник газа-носителя;

· систему подготовки и регулереовким подачи подвижной фазы;

· устройство для ввода пробы;

· хроматографическая колонка;

· детектор;

· термостат колонки и термостат детектора;

· систему сбора данных;

Принципиальная схема установки для газовой хроматографии приведена на рис. 2.

Рис. 1.11. Модульная схема газо-жидкостного хроматографа
Рассмотрим назначение и устройство основных узлов газохроматографической установки.

– Конец работы –

Эта тема принадлежит разделу:

Хроматографические методы. Общая характеристика методов

Хроматографические методы Общая характеристика методов... Характеристики хроматографического разделения компонентов анализируемой... Основные закономерности сорбционных процессов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Газовая хроматография

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ
Абсолютое большинство веществ живой и неживой природы и синтетических веществ, используемых в производстве самых разнообразных продуктов питания и непродовольственных товаров, представляют собой не

Компонентов анализируемой смеси
Результатом хроматографического разделения исследуемой пробы является хроматограмма. Различают внутреннюю и внешнюю хроматограммы. Внутренняя хроматограмма – это распределение разделен

Изотермы адсорбции
Изотермой адсорбции называется количественная зависимость между величиной адсорбции и равновесной концентрацией адсорбируемого вещества. В общем виде уравнение изотермы адсорбции записывае

Изотермы адсорбции и форма фронтов зон
Рассмотрим вопросы применения теории адсорбции к описанию хроматографических разделений. Основными задачами теории адсорбции в приложении к хроматографии являются получение ответов на д

Подвижная фаза. Характеристика основных представителей
При выборе газа-носителя следует учитывать, что природа газа-носителя оказывает влияние как на характеристики разделения компонентов анализируемой смеси в хроматографической колонке, так и на парам

Значения инкрементов функциональных групп и связей
Группа/связь ОМЧ-инкремент - СН2 - ОН = СН – ОН

Величины относительных молярных поправочных коэффициентов
бензол 1.00 метанол 2.46 метан 1.23 этанол 1.77

Величины относительных коэффициентов захвата электронов
Класс соединений Кэз Примеры алканы, алкены, алкины, алифатические эфиры и диены 0.01

Фотоионизационный детектор (ДФИ)
Детектор был предложен в 1968 г., имел нестабильные характеристики и почти не применялся. В конце 70-х начале 80-х годов началась новая эра в развитии ДФИ, связанная, главным образом, с его примене

Силы дисперсионного взаимодействия
Энергия дисперсионного взаимодействия двух сферических частиц описывается уравнением Лондона: , (84) где k - коэффициент пропорциональности, зависящий от потенциала ионизац

Силы ориентационного взаимодействия
Наконец, для двух частиц, обладающих дипольными моментами, возникает ориентационное взаимодействие, энергия которого описывается уравнением: . (87) Под взаимодействующими частицам

Силы полухимического и химического взаимодействий
Еще более прочные адсорбционные связи полухимического характера образуются либо при возникновении водородных связей, либо за счет образования комплексов переноса заряда. Образование водоро

Углеродные адсорбенты
Основными представителями этой группы адсорбентов являются: · графитированная термическая сажа; · активированный уголь; · углеродные молекулярные сита;

Оксид алюминия
Оксид алюминия является весьма термостойким и механически прочным адсорбентом; его удельная поверхность составляет около 200 м2/г. Из-за наличия кислотных и основных (по Льюису)

Органические сорбенты
Наибольшее применение получили пористые сополимеры стирола и дивинилбензола. Эти материалы получают суспензионной полимеризацией мономерных винильных производных (стирола, этилбензола), к которым д

Диатомовые носители
Исходным материалом для носителей служит светло-серое или красновато-коричневое аморфное вещество, представляющее собой обломки панцирей микроскопических диатомовых водорослей – диатомит.

Шкала относительной полярности неподвижных жидких фаз
Неподвижная фаза Р Неподвижная фаза Р сквалан диэтилоксалат

Неароматические углеводороды
Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают большими (по

Силиконы
Диметил- и метилфенилполисилоксаны относятся к числу наиболее часто применяемых неподвижных жидких фаз. Это объясняется несколькими причинами. Силиконы можно применять как при очень низких (

Фенилсиликоны
Наличие фенильных групп в фенилсиликонах приводит к усилению взаимодействия с ароматическими соединениями. Несколько более высокие величины удерживания характерны для полярных соединений. Отличие о

Спирты, эфиры и производные углеводов
Алифатические углеводороды очень плохо растворяются в неподвижных фазах такого типа и поэтому селективно отделяются от других органических соединений. Однако разделение самих гомологов парафинов не

Полигликоли
Эти неподвижные фазы плохо растворяют алифатические углеводороды, но обладают некоторой селективностью для отделения н-парафинов от изопарафинов и насыщенных углеводородов от ненасыщенных. Селектив

Сложные эфиры
Эфиры карбоновых и фосфорных кислот содержат в карбоксильных и фосфатных группах атомы кислорода, способные к образованию водородной связи. Поэтому при применении эфирных неподвижных фаз наблюдаютс

Жидкостная хроматография
Жидкостная хроматография - это метод разделения и анализа сложных смесей веществ, в котором подвижной фазой служит жидкость. Он применим для разделения более широкого круга

Характеристики растворителей, используемых в жидкостной хроматографии
Растворитель Индекс полярности Элюирующая сила (SiO2) Коротковолновая граница прозрачности Фторал

Способы борьбы с пульсациями.
1. Применение демпфирующих устройств. Это спиральные трубки специального профиля из нержавеющей стали, включенные последовательно или параллельно в систему между насосом и дозатором

Техника эксперимента в ТСХ
Активация пластин.Для повышения точности анализов рекомендуется проводить активацию пластин. Это связано с тем, что адсорбционная способность силикагеля и оксида алюминия уменьшает

Сверхкритическая флюидная хроматография
  В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид – вещество, находящееся в сверхкритическом состоянии и имеющее показатели, промежуточны

Важнейшие характеристики газов, сверхкритических флюидов и жидкостей
Характеристика Газы Сверхкритические флюиды Жидкости Плотность, г/см3 0,6 10–3

Критические величины для подвижных фаз в СФХ
Флюид Температура Тс, оС Давление рс, Па Плотность dc, г/см

Принятые термины и сокращения
Время миграции (tм) - время, необходимое компоненту для прохождения им эффективной длины капилляра (Lэфф) от зоны ввода пробы (начала капилляра)

Физико-химические основы метода капиллярного электрофореза
Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора

Капилляры
В системах КЭ используют капилляры из кварца, прозрачного в УФ-области спектра, с внешним полиимидным защитным покрытием. В случае детектирования внутри капилляра (on-line)

Источники высокого напряжения
Источники напряжения обеспечивают подачу постоянного напряжения в диапазоне от –25 до +25 кВ. Максимально допустимый ток в капилляре не должен превышать 200 мкА. В отношении ве

Ввод пробы
Типичный объем вводимой пробы в КЭ составляет 1–20 нл. Общепринято заполнять пробой не более 2 % объема капилляра, чтобы изначально не создавать широкую зону компонентов и обеспечить достаточное вр

Детекторы
Характеристики методов детектирования, используемых в КЭ, представлены в табл. 2. Указанные пределы детектирования позволяют оценить чувствительность того и

Чувствительность метода
Основным способом детектирования в КЭ является фотометрический, чувствительность которого не всегда достаточна, поскольку детектирование происходит в слое малого внутреннего

Качественный и количественный анализ
Для качественного и количественного анализа в КЭ обязательно проводят градуировку системы путем анализа нескольких смесей известного состава. Результатом градуировки являютс

Количественная обработка результатов анализа
Для количественного определения необходимо выбрать метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта

Объекты для анализа методом КЭ. Подготовка пробы
Первые аналитические приложения КЭ были связаны с разделением заряженных компонентов: наиболее подходящими оказались неорганические катионы и анионы, а также карбоновые кислоты. В биотехнологии КЭ

Особенности методики, практические рекомендации
Здесь будет рассмотрен вариант одновременного определения ряда катионов и анионов с использованием прибора «Капель-103РЕ». Для определения к

Количественный анализ
Количественная интерпретация хроматограмм является одним из наиболее ответственных заключительных этапов хроматографического анализа. Задачами количественной интерпретации хроматогр

Параметр h
Если проанализировать влияние возможных отклонений температуры колонки и скорости потока газа-носителя от средних значений, соизмеримых по длительности с продолжительностью регистрации пика на усто

Параметр hl
Влияние изменения условий процесса хроматографического разделения на параметр hl сказываются следующим образом: · флуктуации температуры при работе с обоими видами детекторов

Параметр А
Влияние изменения условий хроматографических разделений на параметр А (площадь пика) сводятся к следующему: · флуктуации температуры не искажают площадь пика при работе с дет

Методы триангуляции
Пик рассматривают как треугольник и площадь его рассчитывают как площадь треугольника. Известны три метода триангуляции (triangle – треугольник). Эти методы приближенные, поскольку площадь пика апп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги