рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Фотоионизационный детектор (ДФИ)

Фотоионизационный детектор (ДФИ) - раздел Полиграфия, Хроматографические методы. Общая характеристика методов Детектор Был Предложен В 1968 Г., Имел Нестабильные Характеристики И Почти Не...

Детектор был предложен в 1968 г., имел нестабильные характеристики и почти не применялся. В конце 70-х начале 80-х годов началась новая эра в развитии ДФИ, связанная, главным образом, с его применением для анализа примесей в воздухе. Новые конструкции детектора имеют чувствительность и линейность на уровне или выше тех же параметров ДПИ, причем в качестве газа-носителя можно использовать воздух. Детектор применяют в портативных и автономных газовых хроматографах, специально разработанных для целей охраны окружающей среды.

Проведено изучение работы ДФИ с различными газами-носи­телями, определены его линейности и чувствительности для большого круга органических веществ. Испробовано применение ДФИ с капиллярными колонками. В качестве источника возбуждения использован лазер, с помощью которого исследован механизм двухфотонной фотоионизации для анализа полиатомных ароматических соединений.

Принцип работы ДФИ состоит в следующем: фотоны от ультрафиолетовой (УФ) лампы попадают в ионизационную камеру, через которую непрерывно проходит газ-носитель, выбранный таким образом, чтобы его потенциал ионизации Ipбыл значительно выше энергии фотонов. В этом случае газ-носитель не ионизируется, в то время как попадание в ионизационную камеру анализируемого вещества вызывает появление фотоионизациойного тока, пропорционального концентра ции этого вещества. Диапазон детектируемых соединений ограничен «сверху» – детектируются все соединения, в том числе и неорганические, для которых потенциал ионизации меньше энергии фотонов. Различные УФ-лампы могут обеспечить разную селективность ДФИ к различным соединениям за счет сведения сигнала к некоторым из них до минимума. В этом случае можно определять даже неразделенные хроматографические пики. Однако такого рода селективность ограничена выбором источников излучения, что в первую очередь связано с отсутствием материалов, пропускающих свет более коротковолновый, чем резонансное излучение аргона: Коротковолновая граница пропускания для ДФИ находится ниже 11,7 э В.

Теоретические вычисления чувствительности ДФИ не дают достоверных результатов. Однако практически установлено, что ДФИ в среднем и в зависимости от типа соединения в 10–30 раз более чувствителен и имеет в 10 раз больший линейный диапазон детектирования, чем ДПИ. Наряду с этим использование воздуха в качестве, газа-носителя и отсутствие пламени дают ДФИ неоспоримые преимущества по сравнению с ДПИ.

Принципиальная схема ДФИ приведена на рис. 11.24. Свет от УФ-лампы 3 через окно 4 из MgF2 попадает в ионизационную камеру 1 с потенциальным 5 и измерительными 2 электродами.. Через трубку, являющуюся потенциальным электродом 5, в камеру из хроматографической колонки поступаем газ-носитель. В качестве источника фотоионизации применена криптоновая УФ-лампа 3 тлеющего разряда типа. Ионизационная камера изготовлена из высокоомной керамйки с электродами из нержавеющей стали. Электроды и окно приклеены к керамическому корпусу специальным клеем. Максимальная рабочая температура такого детектора около 200 °С.

При разработке детектора основные трудности связаны с технологией его изготовления, в том числе герметизацией УФ-лампы, окна из MgF2 и ионизационной камеры, выбором формы и материалов электродов при минимальном размере камеры и др.

Одним из недостатков ДФИ является возможность загрязнения окна из MgF2 компонентами газа-носителя, пробы и неподвижной фазы. Загрязнение приводит к уменьшению потока фотонов и к значительной потере чувствительности.

Фирма «Fotovak» (США) выпускает портативный газовый хроматограф с ДФИ для определения следов органических соединений в атмосфере. С помощью прибора можно определять органические вещества в 1 см пробы воздуха в количестве 0,1 млрд.-1. Преимущества прибора определяются высокостабильным источником фотонов с энергией да 11 эВ, который питается от высокочастотного генератора. Характерной особенностью прибора является возможность его применения при температуре окружающей среды, поэтому основные детали детектора изготовлены из фторопласта.

Для идентификации многокомпонентных смесей может быть применен набор фотоионизационных детекторов с различными УФ-лампами. Соотношение между сигналами ДФИ, например с УФ-лампами на 9,5 эВ и 11,7 эВ, позволяет получить дополнительную информацию о природе анализируемых веществ.

При работе с ДФИ в режиме ДЭЗ в качестве газа-носителя используют азот с примесью легко ионизируемого с помощью УФ-лампы органического вещества. Образовавшиеся электроны собираются на аноде под влиянием электрического поля и ддют фоновый ток, который уменьшается при захвате электронов электроотрицательными анализируемыми веществами. С помощью крана потоки газов-носителей переключаются таким образом, что детектор может последовательно работать в режимах ДФИ и ДЭЗ. Газом-носителем для режима ДЭЗ может служить азот с добавлением паров три-н-пропиламина или нафталина. Фоновый ток зависит от природы и количества добавок, интенсивности УФ-лампы и чистоты окна из MgF2. Для получения фонового тока 1-10-8 А поток нафталина должен составлять около 1 мкг/мин. При этих условиях можно анализировать антрацен на уровне 500 пг. Поляризационное напряжение составляло около 200 В. Линейный диапазон для линдана и гептахлора около 103.

Интерес к ДФИ постоянно повышается и многие фирмы пла­нируют ввести его в состав своих хроматографов в качестве одного из основных детекторов.

 

1.3.5.10. Редокс-хемилюминесцентный детектор (РХД)

Этот вид детекторов был разработан в конце 1970-х годов для количественного анализа азота, водорода и соединений серы в воде или воздухе. Обычно для определения используется реакция азота с озоном.

С помощью РХД можно анализировать следующие классы соединений: спирты, альдегиды, кетоны, фенолы, олефины, ароматические углеводороды, амины, тиолы, сульфиды и фосфонаты. РХД хорошо сочетается с ДИП, так как многие соединения, не дающие сигнала в детекторе ДИП, реагируют как восстановители и тем самым способны регистрироваться детектором РХД.

 

1.3.5.11. Инфракрасные детекторы (ИКД)

Инфракрасная спектроскопия широко применяется в химическом анализе и в сочетании с газовой хроматографией. Методом ИК-спектроскопии с преобразованием Фурье (ИКПФ) проводят анализ элюируемых соединений с высокой скоростью и чувствительностью. Полученный при этом ИК-спектр поглощения можно рассматривать как индивидуальную характеристику соединения и использовать для его идентификации.

 

1.3.5.12 Масс-селективный детектор (МСД)

Уже давно масс-спектрометр рассматривается как отличный детектор для газовой хроматографии. Полученные с его помощью спектры, подобно ИКД, дают такую информацию о качественном составе пробы, какую не могут дать иные газохроматографические детекторы. Различие между МСД и ИКД состоит в том, что первый обладает большей чувствительностью по сравнению с ИКД, кроме того, он разрушает пробу, дает информацию о массе, а не о функциональных группах и различает скорее гомологи, чем изомеры.

При бомбардировке электронами молекул в газообразном состоянии связи в молекулах разрываются и образуют ионы. Вид и количество образующихся фрагментов характерны для данной молекулы. При наложении магнитного поля положительно заряженные частицы ускоряются и движутся по изогнутым кривым, радиус кривизны которых пропорционален корню квадратному из массы иона. При некотором постоянном магнитном поле поток ионов, содержащий ионы с идентичным масса/заряд, попадает на коллектор. Здесь при разряде ионов возникает ток, пропорциональный относительному количеству ионов с соответствующей массой. Изменением магнитного поля постепенно переводят на коллектор потоки ионов с другим соотношением масса/заряд. Ток коллектора записывается и дает масс-спектрограмму.

В квадрупольном масс-спектрометре разделение по массе достигается иным образом. Между четырьмя постоянными магнитами образуется высокочастотное электрическое поле. Когда пучок ионов попадает в это поле, только ионы с определенным отношением масса/заряд имеют стабильную траекторию и попадают на детектор (коллектор). Детектирование пучков с различным отношением масса/заряд проводят варьированием электрического поля.

 


 

3.1. Варианты метода газовой хроматографии

При классификации вариантов методов газовой хроматографии предполагается, что подвижная фаза (газ-носитель) абсолютно инертна к неподвижной фазе и разделяемым соединениям.

Таким образом, классификация вариантов основывается только на особенностях неподвижной фазы.

В качестве неподвижной фазы в газовой хроматографии используется или твердый адсорбент, или жидкость, нанесенная в виде тонкой пленки на адсорбционно инертный твердый носитель.

В соответствии с типом используемых неподвижных фаз газохроматографические методы подразделяются на газо-адсорбционный и газо-жидкостный. Разделение компонентов анализируемой смеси в газо-адсорбционном варианте основано на различии разделяемых веществ в величинах адсорбции на поверхности адсорбента, а в случае газожидкостной хроматографии на различии в растворимости компонентов анализируемой смеси в неподвижной жидкой фазе.

В том случае, если используемый твердый носитель неподвижной жидкой фазы проявляет адсорбционные свойства, реализуется промежуточный вариант газовой хроматографии – газо-жидко-твердофазная хроматография.

Каждый из вариантов характеризуется своими положительными чертами и недостатками, которые обязательно следует учитывать при выборе оптимального метода разделения каждой конкретной смеси.

Для получения достоверных результатов анализа необходимо подобрать оптимальные условия хроматографирования, к числу которых прежде всего следует отнести выбор температуры колонки, адсорбента, газа-носителя, его скорости, количества вводимой пробы, и др.

 

1.5.1 Газоадсорбционная хроматография. Особенность метода газоадсорбционной хроматографии состоит в том, что в качестве неподвижной фазы применяют адсорбенты с высокой удельной поверхностью (10–1000 м2/г) и распределение веществ между неподвижной и подвижной фазами определяется процессом адсорбции молекул разделяемых веществ из газовой фазы и их концентрированием на поверхности раздела твердой и газовой фаз за счет межмолекулярных взаимодействий.

При осуществлении газоадсорбционной хроматографии первостепенное значение имеет правильный выбор адсорбента. Адсорбент должен обладать следующими свойствами:

- достаточной селективностью;

- химической и каталитической инертностью;

- изотермой адсорбции, близкой к линейной;

- достаточной механической прочностью.

Селективность адсорбента определяется в первую очередь силами взаимодействия адсорбата с поверхностью адсорбента.

В общем виде различают две группы сил: физические и химические, хотя между ними имеются и переходные моменты.

При физической адсорбции взаимодействие разделяемых молекул с поверхностью адсорбента осуществляется за счет ориентационных, индукционных и дисперсионных сил, называемых в совокупности ван-дер-ваальсовыми.

Силы полухимического взаимодействия – это прежде всего водородная связь и образование комплексов переноса заряда.

И, наконец, хемосорбция протекающая за счет образования прочной химической связи между молекулами разделяемых веществ и адсорбентом.

 

– Конец работы –

Эта тема принадлежит разделу:

Хроматографические методы. Общая характеристика методов

Хроматографические методы Общая характеристика методов.. Характеристики хроматографического разделения компонентов анализируемой.. Основные закономерности сорбционных процессов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Фотоионизационный детектор (ДФИ)

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ
Абсолютое большинство веществ живой и неживой природы и синтетических веществ, используемых в производстве самых разнообразных продуктов питания и непродовольственных товаров, представляют собой не

Компонентов анализируемой смеси
Результатом хроматографического разделения исследуемой пробы является хроматограмма. Различают внутреннюю и внешнюю хроматограммы. Внутренняя хроматограмма – это распределение разделен

Изотермы адсорбции
Изотермой адсорбции называется количественная зависимость между величиной адсорбции и равновесной концентрацией адсорбируемого вещества. В общем виде уравнение изотермы адсорбции записывае

Изотермы адсорбции и форма фронтов зон
Рассмотрим вопросы применения теории адсорбции к описанию хроматографических разделений. Основными задачами теории адсорбции в приложении к хроматографии являются получение ответов на д

Газовая хроматография
Газовая хроматография - метод разделения летучих соединений. Поскольку в процессе разделения анализируемые вещества должны находиться в газообразном состоянии, что достигается

Подвижная фаза. Характеристика основных представителей
При выборе газа-носителя следует учитывать, что природа газа-носителя оказывает влияние как на характеристики разделения компонентов анализируемой смеси в хроматографической колонке, так и на парам

Значения инкрементов функциональных групп и связей
Группа/связь ОМЧ-инкремент - СН2 - ОН = СН – ОН

Величины относительных молярных поправочных коэффициентов
бензол 1.00 метанол 2.46 метан 1.23 этанол 1.77

Величины относительных коэффициентов захвата электронов
Класс соединений Кэз Примеры алканы, алкены, алкины, алифатические эфиры и диены 0.01

Силы дисперсионного взаимодействия
Энергия дисперсионного взаимодействия двух сферических частиц описывается уравнением Лондона: , (84) где k - коэффициент пропорциональности, зависящий от потенциала ионизац

Силы ориентационного взаимодействия
Наконец, для двух частиц, обладающих дипольными моментами, возникает ориентационное взаимодействие, энергия которого описывается уравнением: . (87) Под взаимодействующими частицам

Силы полухимического и химического взаимодействий
Еще более прочные адсорбционные связи полухимического характера образуются либо при возникновении водородных связей, либо за счет образования комплексов переноса заряда. Образование водоро

Углеродные адсорбенты
Основными представителями этой группы адсорбентов являются: · графитированная термическая сажа; · активированный уголь; · углеродные молекулярные сита;

Оксид алюминия
Оксид алюминия является весьма термостойким и механически прочным адсорбентом; его удельная поверхность составляет около 200 м2/г. Из-за наличия кислотных и основных (по Льюису)

Органические сорбенты
Наибольшее применение получили пористые сополимеры стирола и дивинилбензола. Эти материалы получают суспензионной полимеризацией мономерных винильных производных (стирола, этилбензола), к которым д

Диатомовые носители
Исходным материалом для носителей служит светло-серое или красновато-коричневое аморфное вещество, представляющее собой обломки панцирей микроскопических диатомовых водорослей – диатомит.

Шкала относительной полярности неподвижных жидких фаз
Неподвижная фаза Р Неподвижная фаза Р сквалан диэтилоксалат

Неароматические углеводороды
Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают большими (по

Силиконы
Диметил- и метилфенилполисилоксаны относятся к числу наиболее часто применяемых неподвижных жидких фаз. Это объясняется несколькими причинами. Силиконы можно применять как при очень низких (

Фенилсиликоны
Наличие фенильных групп в фенилсиликонах приводит к усилению взаимодействия с ароматическими соединениями. Несколько более высокие величины удерживания характерны для полярных соединений. Отличие о

Спирты, эфиры и производные углеводов
Алифатические углеводороды очень плохо растворяются в неподвижных фазах такого типа и поэтому селективно отделяются от других органических соединений. Однако разделение самих гомологов парафинов не

Полигликоли
Эти неподвижные фазы плохо растворяют алифатические углеводороды, но обладают некоторой селективностью для отделения н-парафинов от изопарафинов и насыщенных углеводородов от ненасыщенных. Селектив

Сложные эфиры
Эфиры карбоновых и фосфорных кислот содержат в карбоксильных и фосфатных группах атомы кислорода, способные к образованию водородной связи. Поэтому при применении эфирных неподвижных фаз наблюдаютс

Жидкостная хроматография
Жидкостная хроматография - это метод разделения и анализа сложных смесей веществ, в котором подвижной фазой служит жидкость. Он применим для разделения более широкого круга

Характеристики растворителей, используемых в жидкостной хроматографии
Растворитель Индекс полярности Элюирующая сила (SiO2) Коротковолновая граница прозрачности Фторал

Способы борьбы с пульсациями.
1. Применение демпфирующих устройств. Это спиральные трубки специального профиля из нержавеющей стали, включенные последовательно или параллельно в систему между насосом и дозатором

Техника эксперимента в ТСХ
Активация пластин.Для повышения точности анализов рекомендуется проводить активацию пластин. Это связано с тем, что адсорбционная способность силикагеля и оксида алюминия уменьшает

Сверхкритическая флюидная хроматография
  В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид – вещество, находящееся в сверхкритическом состоянии и имеющее показатели, промежуточны

Важнейшие характеристики газов, сверхкритических флюидов и жидкостей
Характеристика Газы Сверхкритические флюиды Жидкости Плотность, г/см3 0,6 10–3

Критические величины для подвижных фаз в СФХ
Флюид Температура Тс, оС Давление рс, Па Плотность dc, г/см

Принятые термины и сокращения
Время миграции (tм) - время, необходимое компоненту для прохождения им эффективной длины капилляра (Lэфф) от зоны ввода пробы (начала капилляра)

Физико-химические основы метода капиллярного электрофореза
Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора

Капилляры
В системах КЭ используют капилляры из кварца, прозрачного в УФ-области спектра, с внешним полиимидным защитным покрытием. В случае детектирования внутри капилляра (on-line)

Источники высокого напряжения
Источники напряжения обеспечивают подачу постоянного напряжения в диапазоне от –25 до +25 кВ. Максимально допустимый ток в капилляре не должен превышать 200 мкА. В отношении ве

Ввод пробы
Типичный объем вводимой пробы в КЭ составляет 1–20 нл. Общепринято заполнять пробой не более 2 % объема капилляра, чтобы изначально не создавать широкую зону компонентов и обеспечить достаточное вр

Детекторы
Характеристики методов детектирования, используемых в КЭ, представлены в табл. 2. Указанные пределы детектирования позволяют оценить чувствительность того и

Чувствительность метода
Основным способом детектирования в КЭ является фотометрический, чувствительность которого не всегда достаточна, поскольку детектирование происходит в слое малого внутреннего

Качественный и количественный анализ
Для качественного и количественного анализа в КЭ обязательно проводят градуировку системы путем анализа нескольких смесей известного состава. Результатом градуировки являютс

Количественная обработка результатов анализа
Для количественного определения необходимо выбрать метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта

Объекты для анализа методом КЭ. Подготовка пробы
Первые аналитические приложения КЭ были связаны с разделением заряженных компонентов: наиболее подходящими оказались неорганические катионы и анионы, а также карбоновые кислоты. В биотехнологии КЭ

Особенности методики, практические рекомендации
Здесь будет рассмотрен вариант одновременного определения ряда катионов и анионов с использованием прибора «Капель-103РЕ». Для определения к

Количественный анализ
Количественная интерпретация хроматограмм является одним из наиболее ответственных заключительных этапов хроматографического анализа. Задачами количественной интерпретации хроматогр

Параметр h
Если проанализировать влияние возможных отклонений температуры колонки и скорости потока газа-носителя от средних значений, соизмеримых по длительности с продолжительностью регистрации пика на усто

Параметр hl
Влияние изменения условий процесса хроматографического разделения на параметр hl сказываются следующим образом: · флуктуации температуры при работе с обоими видами детекторов

Параметр А
Влияние изменения условий хроматографических разделений на параметр А (площадь пика) сводятся к следующему: · флуктуации температуры не искажают площадь пика при работе с дет

Методы триангуляции
Пик рассматривают как треугольник и площадь его рассчитывают как площадь треугольника. Известны три метода триангуляции (triangle – треугольник). Эти методы приближенные, поскольку площадь пика апп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги