рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Характеристики растворителей, используемых в жидкостной хроматографии

Характеристики растворителей, используемых в жидкостной хроматографии - раздел Полиграфия, Хроматографические методы. Общая характеристика методов Растворитель Индекс Полярности ...

Растворитель Индекс полярности Элюирующая сила (SiO2) Коротковолновая граница прозрачности
Фторалкан < –2 –0,2
Циклогексан 0,04 0,03
н-Гексан 0,1 0,01
Тетрахлорметан 1,6 0,11
Диизопропиловый эфир 2,4 0,22
Толуол 2,4 0,22
Диэтиловый эфир 2,8 0,38
Дихлорметан 3,1 0,34
Тетрагидрофуран 4,0 0,35
Хлороформ 4,1 0,26
Этанол 4,3 0,68
Уксусная кислота 4,4 0,38
Диоксан 4,8 0,49
Метанол 5,1 0,73
Ацетонитрил 5,8 0,50
Нитрометан 6,0 0,49
Вода 10,2 Высокая

 

В жидкостной хроматографии часто используют не индивидуальные растворители, а их смеси. Часто незначительные добавки другого растворителя, особенно воды, существенно увеличивают элюирующую силу элюента.

При разделении многокомпонентных смесей одна подвижная фаза в качестве элюента может не разделить все компоненты пробы за приемлемое время. В этом случае применяют метод ступенчатого, или градиентного, элюирования, при котором в процессе хроматографирования последовательно используют все более сильные элюенты, что позволяет элюировать сильноудерживаемые вещества за меньшее время.

В жидкостной хроматографии существуют некоторые эмпирические правила, которые очень полезны при выборе элюента:

- сорбция соединения, как правило, увеличивается с ростом в нем количества двойных связей и ОН-групп;

- сорбция уменьшается в ряду органических соединений: кислоты > спирты > альдегиды > кетоны > сложные эфиры > ненасыщенные углеводороды > насыщенные углеводороды;

- для разделения веществ разной полярности и разделения веществ разных классов применяют нормально-фазовую хроматографию: анализируемая проба растворяется и элюируется неполярным элюентом, соединения разных классов выходят из колонки с полярным адсорбентом за разное время, при этом время удерживания соединений с разными функциональными группами увеличивается при переходе от неполярных соединений к слабополярным. Для очень полярных молекул значения времени удерживания так велики, что при использовании неполярного элюента анализ невозможен. Для уменьшения времени удерживания полярных компонентов переходят к полярным элюентам;

- в обращенно-фазовом варианте неподвижная фаза (неполярный адсорбент) сильнее адсорбирует неполярный компонент из полярных элюентов, например из воды;

- снижая полярность элюента добавлением менее полярного растворителя, можно уменьшить удерживание компонентов.

 

1.6.2. Распределительная жидкостная хроматография. В распределительной или жидкость-жидкостной хроматографии разделение компонентов анализируемой пробы обусловлено различиями в коэффициентах их распределения между двумя не смешивающимися между собой жидкими фазами, одна из которых неподвижная и находится на поверхности или в порах твердого неподвижного носителя, а вторая - подвижная.

По характеру сил взаимодействия, обусловливающих различное распределение между двумя фазами веществ, отличающихся своим химическим строением, распределительная хроматография подобна адсорбционной, т. е. и здесь разделение основано на различии в силах межмолекулярного взаимодействия компонентов анализируемой пробы с неподвижной и подвижной жидкими фазами.

В зависимости от техники выполнения распределительная хроматография, как и адсорбционная, может быть колоночной или плоскостной (бумажной или тонкослойной).

В качестве твердых носителей используют вещества, индифферентные по отношению к подвижному растворителю и компонентам анализируемой пробы, но способные удерживать на поверхности и в порах неподвижную фазу. Чаще всего в качестве носителей применяют полярные вещества (целлюлозу, силикагель, крахмал). На них наносят неподвижную фазу - полярный растворитель, чаще всего воду или спирт. В качестве подвижных фаз в этом случае используют менее полярные или неполярные вещества (спирты, амины, кетоны, углеводороды и др.). Такой вариант распределительной хроматографии называется нормально-фазовым. Он применяется для разделения полярных веществ.

Второй вариант распределительной хроматографии отличается тем, что в качестве неподвижной твердой фазы используют неполярные носители (резину, фторопласт, гидрофобизированный силикагель), в качестве неподвижной жидкой фазы - неполярные растворители (углеводороды), а в качестве подвижной жидкой фазы - полярные растворители (спирты, альдегиды, кетоны и др., часто вода). Этот вариант распределительной хроматографии называется обращенно-фазовой и используется для разделения неполярных веществ.

Для достижения оптимального разделения компонентов анализируемой пробы очень важное значение имеет подбор подвижной фазы. Растворители (подвижные и неподвижные жидкие фазы) должны подбираться так, чтобы коэффициенты распределения компонентов смеси различались достаточно существенно. К жидким фазам предъявляются следующие требования:

1) используемые растворители должны хорошо растворять разделяемые вещества, причем их растворимость в неподвижной фазе должна быть больше, чем в подвижной;

2) растворители, используемые в качестве подвижной и неподвижной фаз, должны быть взаимонасыщаемы, т. е. состав растворителя должен быть постоянным во время прохождения через колонку;

3) взаимодействие растворителей, используемых в качестве подвижной фазы, с неподвижной фазой должно быть минимальным.

 

Чаще всего в распределительной жидкостной хроматографии в качестве подвижных жидких фаз применяют не индивидуальные вещества, а их смеси в различных соотношениях. Это позволяет регулировать полярность подвижной фазы, изменять соотношение полярностей подвижной и неподвижной фаз и добиваться оптимальных условий разделения компонентов конкретной анализируемой смеси.

Существенным недостатком этого хроматографического метода является достаточно быстрое смывание нанесённой неподвижной жидкой фазы с носителя. Для его устранения растворитель, используемый в качестве подвижной фазы, насыщают веществом, применяемым в качестве неподвижной жидкой фазы, или стабилизируют неподвижную жидкую фазу прививкой ее к носителю.

Разновидностью распределительной жидкостной хроматографии является широко используемый метод ВЭЖХ.


Самыми распространенными хроматографическими системами являются системы, имеющие модульный принцип сборки. Насосы, дегазирующие устройства, детекторы, дозаторы (автосамплеры), термостаты для колонок, коллекторы фракций, блоки управления хроматографической системой и регистрирующие устройства выпускаются в виде отдельных модулей. Широкий выбор модулей позволяет гибко решать различные аналитические задачи, быстро менять при необходимости конфигурацию системы с минимальными расходами. Вместе с тем выпускаются и мономодульные (интегрированные) ЖХ, главным преимуществом которых является миниатюризация отдельных блоков, компактность прибора.

В зависимости от способа элюирования жидкостные хроматографы делятся на изократические и градиентные.

– Конец работы –

Эта тема принадлежит разделу:

Хроматографические методы. Общая характеристика методов

Хроматографические методы Общая характеристика методов... Характеристики хроматографического разделения компонентов анализируемой... Основные закономерности сорбционных процессов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Характеристики растворителей, используемых в жидкостной хроматографии

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ
Абсолютое большинство веществ живой и неживой природы и синтетических веществ, используемых в производстве самых разнообразных продуктов питания и непродовольственных товаров, представляют собой не

Компонентов анализируемой смеси
Результатом хроматографического разделения исследуемой пробы является хроматограмма. Различают внутреннюю и внешнюю хроматограммы. Внутренняя хроматограмма – это распределение разделен

Изотермы адсорбции
Изотермой адсорбции называется количественная зависимость между величиной адсорбции и равновесной концентрацией адсорбируемого вещества. В общем виде уравнение изотермы адсорбции записывае

Изотермы адсорбции и форма фронтов зон
Рассмотрим вопросы применения теории адсорбции к описанию хроматографических разделений. Основными задачами теории адсорбции в приложении к хроматографии являются получение ответов на д

Газовая хроматография
Газовая хроматография - метод разделения летучих соединений. Поскольку в процессе разделения анализируемые вещества должны находиться в газообразном состоянии, что достигается

Подвижная фаза. Характеристика основных представителей
При выборе газа-носителя следует учитывать, что природа газа-носителя оказывает влияние как на характеристики разделения компонентов анализируемой смеси в хроматографической колонке, так и на парам

Значения инкрементов функциональных групп и связей
Группа/связь ОМЧ-инкремент - СН2 - ОН = СН – ОН

Величины относительных молярных поправочных коэффициентов
бензол 1.00 метанол 2.46 метан 1.23 этанол 1.77

Величины относительных коэффициентов захвата электронов
Класс соединений Кэз Примеры алканы, алкены, алкины, алифатические эфиры и диены 0.01

Фотоионизационный детектор (ДФИ)
Детектор был предложен в 1968 г., имел нестабильные характеристики и почти не применялся. В конце 70-х начале 80-х годов началась новая эра в развитии ДФИ, связанная, главным образом, с его примене

Силы дисперсионного взаимодействия
Энергия дисперсионного взаимодействия двух сферических частиц описывается уравнением Лондона: , (84) где k - коэффициент пропорциональности, зависящий от потенциала ионизац

Силы ориентационного взаимодействия
Наконец, для двух частиц, обладающих дипольными моментами, возникает ориентационное взаимодействие, энергия которого описывается уравнением: . (87) Под взаимодействующими частицам

Силы полухимического и химического взаимодействий
Еще более прочные адсорбционные связи полухимического характера образуются либо при возникновении водородных связей, либо за счет образования комплексов переноса заряда. Образование водоро

Углеродные адсорбенты
Основными представителями этой группы адсорбентов являются: · графитированная термическая сажа; · активированный уголь; · углеродные молекулярные сита;

Оксид алюминия
Оксид алюминия является весьма термостойким и механически прочным адсорбентом; его удельная поверхность составляет около 200 м2/г. Из-за наличия кислотных и основных (по Льюису)

Органические сорбенты
Наибольшее применение получили пористые сополимеры стирола и дивинилбензола. Эти материалы получают суспензионной полимеризацией мономерных винильных производных (стирола, этилбензола), к которым д

Диатомовые носители
Исходным материалом для носителей служит светло-серое или красновато-коричневое аморфное вещество, представляющее собой обломки панцирей микроскопических диатомовых водорослей – диатомит.

Шкала относительной полярности неподвижных жидких фаз
Неподвижная фаза Р Неподвижная фаза Р сквалан диэтилоксалат

Неароматические углеводороды
Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают большими (по

Силиконы
Диметил- и метилфенилполисилоксаны относятся к числу наиболее часто применяемых неподвижных жидких фаз. Это объясняется несколькими причинами. Силиконы можно применять как при очень низких (

Фенилсиликоны
Наличие фенильных групп в фенилсиликонах приводит к усилению взаимодействия с ароматическими соединениями. Несколько более высокие величины удерживания характерны для полярных соединений. Отличие о

Спирты, эфиры и производные углеводов
Алифатические углеводороды очень плохо растворяются в неподвижных фазах такого типа и поэтому селективно отделяются от других органических соединений. Однако разделение самих гомологов парафинов не

Полигликоли
Эти неподвижные фазы плохо растворяют алифатические углеводороды, но обладают некоторой селективностью для отделения н-парафинов от изопарафинов и насыщенных углеводородов от ненасыщенных. Селектив

Сложные эфиры
Эфиры карбоновых и фосфорных кислот содержат в карбоксильных и фосфатных группах атомы кислорода, способные к образованию водородной связи. Поэтому при применении эфирных неподвижных фаз наблюдаютс

Жидкостная хроматография
Жидкостная хроматография - это метод разделения и анализа сложных смесей веществ, в котором подвижной фазой служит жидкость. Он применим для разделения более широкого круга

Способы борьбы с пульсациями.
1. Применение демпфирующих устройств. Это спиральные трубки специального профиля из нержавеющей стали, включенные последовательно или параллельно в систему между насосом и дозатором

Техника эксперимента в ТСХ
Активация пластин.Для повышения точности анализов рекомендуется проводить активацию пластин. Это связано с тем, что адсорбционная способность силикагеля и оксида алюминия уменьшает

Сверхкритическая флюидная хроматография
  В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид – вещество, находящееся в сверхкритическом состоянии и имеющее показатели, промежуточны

Важнейшие характеристики газов, сверхкритических флюидов и жидкостей
Характеристика Газы Сверхкритические флюиды Жидкости Плотность, г/см3 0,6 10–3

Критические величины для подвижных фаз в СФХ
Флюид Температура Тс, оС Давление рс, Па Плотность dc, г/см

Принятые термины и сокращения
Время миграции (tм) - время, необходимое компоненту для прохождения им эффективной длины капилляра (Lэфф) от зоны ввода пробы (начала капилляра)

Физико-химические основы метода капиллярного электрофореза
Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора

Капилляры
В системах КЭ используют капилляры из кварца, прозрачного в УФ-области спектра, с внешним полиимидным защитным покрытием. В случае детектирования внутри капилляра (on-line)

Источники высокого напряжения
Источники напряжения обеспечивают подачу постоянного напряжения в диапазоне от –25 до +25 кВ. Максимально допустимый ток в капилляре не должен превышать 200 мкА. В отношении ве

Ввод пробы
Типичный объем вводимой пробы в КЭ составляет 1–20 нл. Общепринято заполнять пробой не более 2 % объема капилляра, чтобы изначально не создавать широкую зону компонентов и обеспечить достаточное вр

Детекторы
Характеристики методов детектирования, используемых в КЭ, представлены в табл. 2. Указанные пределы детектирования позволяют оценить чувствительность того и

Чувствительность метода
Основным способом детектирования в КЭ является фотометрический, чувствительность которого не всегда достаточна, поскольку детектирование происходит в слое малого внутреннего

Качественный и количественный анализ
Для качественного и количественного анализа в КЭ обязательно проводят градуировку системы путем анализа нескольких смесей известного состава. Результатом градуировки являютс

Количественная обработка результатов анализа
Для количественного определения необходимо выбрать метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта

Объекты для анализа методом КЭ. Подготовка пробы
Первые аналитические приложения КЭ были связаны с разделением заряженных компонентов: наиболее подходящими оказались неорганические катионы и анионы, а также карбоновые кислоты. В биотехнологии КЭ

Особенности методики, практические рекомендации
Здесь будет рассмотрен вариант одновременного определения ряда катионов и анионов с использованием прибора «Капель-103РЕ». Для определения к

Количественный анализ
Количественная интерпретация хроматограмм является одним из наиболее ответственных заключительных этапов хроматографического анализа. Задачами количественной интерпретации хроматогр

Параметр h
Если проанализировать влияние возможных отклонений температуры колонки и скорости потока газа-носителя от средних значений, соизмеримых по длительности с продолжительностью регистрации пика на усто

Параметр hl
Влияние изменения условий процесса хроматографического разделения на параметр hl сказываются следующим образом: · флуктуации температуры при работе с обоими видами детекторов

Параметр А
Влияние изменения условий хроматографических разделений на параметр А (площадь пика) сводятся к следующему: · флуктуации температуры не искажают площадь пика при работе с дет

Методы триангуляции
Пик рассматривают как треугольник и площадь его рассчитывают как площадь треугольника. Известны три метода триангуляции (triangle – треугольник). Эти методы приближенные, поскольку площадь пика апп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги