рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Диатомовые носители

Диатомовые носители - раздел Полиграфия, Хроматографические методы. Общая характеристика методов Исходным Материалом Для Носителей Служит Светло-Серое Или Красновато-Коричнев...

Исходным материалом для носителей служит светло-серое или красновато-коричневое аморфное вещество, представляющее собой обломки панцирей микроскопических диатомовых водорослей – диатомит.

Диатомовая горная порода состоит в основном из аморфного кремнезема, содержащего от 20 до 80 % физически связанной воды.

Диатомит промывают водой, чтобы отделить загрязняющий материал, например песок, сушат и перемалывают. Прокаливанием во вращающейся печи, иногда в присутствии гидроксидов, удаляют органические соединения. Цвет диатомитов при этом изменяется, а его удельная поверхность уменьшается от 12-40 (сырой продукт) до 1-5 м2/г.

Далее диатомит измельчают, просеивают и, если необходимо, освобождают от оксидов железа.

Из такого порошкообразного материала и готовят носитель для хроматографических колонок.

Следует различать диатомовые носители первого и второго типа.

Диатомовые носители первого типа характеризуются достаточно большой механической прочностью, величиной удельной поверхности порядка 4 м2/г, большой насыпной массой (г/см3).

Вследствие пропорциональной зависимости между удельной поверхностью и адсорбционными свойствами носителя этот недоста-ток проявляется ярче, чем у носителей второго типа. В связи с этим носители первого типа применяются преимущественно для анализа смесей углеводородов.

Представителями твердых носителей этого типа являются: стерхамол, рисорб, диатопорт, анакром, сферохром-2, сферохром-3, динохром-N, ИНЗ-600.

Диатомовые носители второго типа характеризуются величиной удельной поверхности порядка 1 м2/г, малой насыпной массой и, как следствие, малой адсорбционной активностью.

Наиболее часто в практике встречаются следующие представители этого типа носителей: кизельгур, хромосорб, целит, газохром, сферохром-1, порохром, динохром, хроматон, инертон.

Модифицирование носителей. Обработка кислотами. Установлено, что неорганические загрязнения кислотами отмываются полнее, чем гидроксидами. Предварительную обработку кислотами рекомендуется проводить перед силанизацией, так как в этом случае носитель становится более инертным, чем в результате одной лишь силанизации.

Обработка кислотами (чаще всего соляной) проводится следующим образом: 100 г твердого носителя смешивают с 500 мл дистиллированной воды в стакане емкостью 1 л. Через 2 минуты взвесь мелких частиц декантируют. Процесс повторяют до удаления практически всех мелких пылевидных частиц.

Носитель отфильтровывают на воронке Бюхнера, отсасывают досуха и переносят в стакан емкостью 500 мл. Добавляют 250 мл концентрированной соляной кислоты, тщательно перемешивают, дают 2 минуты отстояться, декантируют и снова добавляют 150 мл кислоты. Смесь перемешивают и оставляют стоять на ночь.

Затем смесь тщательно взмучивают и декантируют. Декантация проводится четырежды, добавляя каждый раз 300 мл воды. Далее носитель отфильтровывают на воронке Бюхнера, промывают водой до нейтральной реакции, отсасывают досуха и сушат при 150 оС на воздухе в течение суток.

Обработка гидроксидами. Обработку гидроксидами диатомовых носителей следует проводить при разделении основных соединений - аминов, диаминов, пиридинов, хинолина, гуанидина, метиламина, эпоксипроизводных.

Отмечено, что обработка гидроксидами разрушает каталитические центры носителя и снижает их активность.

На практике твердый носитель тщательно пропитывают метанолом и полученную массу перемешивают с 6-процентным метанольным раствором гидроксида в течение часа в роторном испарителе без нагревания. Затем отгоняют в вакууме растворитель, и высушенный продукт просеивают.

При использовании обработанных гидроксидами носителей в практике следует учитывать способность свободных гидроксидов разлагать или адсорбировать многие из разделяемых соединений.

Обработка силанизирующими реагентами. Свободные группы Si-OH, расположенные на поверхности носителя, оказывают мешающее действие, особенно в тех случаях, если на носитель нанесено очень небольшое количество неподвижной жидкой фазы или если жидкая фаза почти неполярна, а разделяемые соединения характеризуются значительной полярностью.

Остаточную активность носителя можно снизить еще в большей степени, если провести замещение атома водорода в группах Si-OH на органосилильные радикалы.

Одним из вариантом модифицирования поверхности является обработка носителя диметилдихлорсиланом или триметилхлорсиланом:

Si-OH + (CH3)3SiCl à Si-O-Si(CH3)3 + HCl.

Силанизация гексаметилдисилазаном протекает по схеме:

Si-OH + (CH3)3Si-NH-Si(CH3)3 à Si-O-Si(CH3)3 + (CH3)3Si-NH2

Si-OH + (CH3)3Si-NH2 à Si-O-Si(CH3)3 + NH3

(CH3)3Si-NH-Si(CH3)3 + H2O à (CH3)3Si-O-Si(CH3)3 + NH3.

Последнее уравнение - уравнение медленно протекающей побочной реакции.

В результате проведения силанизации удельная поверхность носителя может несколько снизиться, однако если сам исходный диатомит малоактивен, то силанизация позволяет получить носитель, пригодный для эффективного разделения большинства смесей.

У таких носителей имеется лишь один недостаток: так как покрытая кремнийорганическим соединениями поверхность носителя оказывается гидрофобной, она слабее удерживает такие полярные неподвижные жидкие фазы, как глицерин или диглицерин, в результате чего на таких неподвижных жидких фазах, прежде всего при повышенных загрузках колонок, эффективность разделения невелика.

Отмытые кислотой, гидроксидами и силанизированные носители специальным образом маркируются. Например, носитель газохром-Q ABW-DMCS - промыт кислотой, гидроксидом, водой и обработан диметилхлорсиланом.

 

Стеклянные микрошарики

 

При использовании стеклянных микрошариков в качестве носителей неподвижной жидкой фазы следует учитывать, что они обладают определенными адсорбционными свойствами. Их адсорбционную активность можно снизить путем использования стекла, не содержащего кальция, и блокированием групп Si-OH диметилдихлорсиланом, как и в случае диатомовых носителей.

Вследствие малой удельной поверхности стеклянных шариков на них возможно нанесение только очень небольшого количества неподвижной жидкой фазы.

Максимально возможное количество жидкости, удерживающейся на поверхности шарика, зависит от его радиуса, величин поверхностного натяжения и плотности жидкости и составляет от 0.05 до 3 %. При этом следует учитывать, что вследствие большой плотности стеклянного носителя (около 2 г/см3) содержание 1 % неподвижной фазы на шариках соответствует 10 % содержанию на диатомовом носителе хромосорбе-W (плотность 0.22 г/cм3).

При тщательной предварительной обработке стеклянного носителя и низкой концентрации неподвижной жидкой фазы (до 0.02 %) минимальное значение высоты эквивалентной теоретической тарелке может составить 0.5 мм, при этом наблюдается минимальная адсорбционная активность.

 

Силикагель

Необработанный силикагель, изготовленный из кремниевой кислоты, имеет очень большую поверхность и тонкие поры, что приводит к проявлению высокой адсорбционной активности и не дает возможности применять его в качестве носителя неподвижной жидкой фазы.

Тем не менее вследствие постоянства своего химического состава, силикагель в большей степени пригоден в качестве носителя, независимого от загрузки пробой, чем, например, диатомит, содержащий целый ряд загрязнений (примеси железа, алюминия, магния, кальция), если можно уменьшить величину поверхности силикагеля, расширить слишком узкие поры, добиться равномерного распределения пор по диаметрам и дезактивировать группы Si-OH.

Носитель с хорошими свойствами получается путем обработки силикагеля водой в автоклаве с последующим замещением ОН-групп на радикалы -О-Si(CH3)3.

Оксид алюминия

 

Оксид алюминия, как и необработанный силикагель, проявляет большую адсорбционную активность и взаимодействует с разделяемыми веществами, поэтому его селективность в значительной мере зависит от степени пропитки неподвижной жидкой фазой.

Политетрафторэтилен

 

Политетрафторэтилен является важнейшим носителем из числа органических носителей.

Он превосходит другие материалы по термостойкости, позволяет работать при температурах до 200 оС. Выше этой температуры форма частиц носителя меняется, что приводит к снижению эффективности разделения. Начиная с температуры 290 оС, политетрафторэтилен разлагается с выделением ядовитого перфторизобутена. Поэтому перегревания носителя до такой температуры допускать нельзя.

Основным преимуществом политетрафторэтилена является чрезвычайно низкая химическая активность: он реагирует только с расплавленными щелочными металлами и элементным фтором и не проявляет никакой каталитической и адсорбционной активности.

Другие носители

Для разделения сильнополярных низкомолекулярных соединений часто используют пористые носители на основе сополимеров стирола и дивинилбензола, известных под названиями полисорб 1,2.

 

 

13.3. Неподвижные жидкие фазы

 

Неподвижная жидкая фаза является ответственной за разделение смесей газов или паров на отдельные компоненты, которое должно осуществляться достаточно быстро и достаточно эффективно.

В этой связи вещества, используемые в качестве неподвижных жидких фаз, должны отвечать определенным требованиям по следующим параметрам:

· химическая активность;

· давление паров и термостойкость;

· размеры молекул;

· вязкость;

· способность к образованию пленок;

· способность к растворению разделяемых соединений;

· разделительные свойства.

Химическая активность

Неподвижная жидкая фаза не должна вступать в необратимые реакции ни с газом-носителем, ни с компонентами разделяемой смеси, ни с носителем неподвижной жидкой фазы.

Например, при применении в качестве газа-носителя воздуха или иного содержащего кислород газа возможно окисление чувствительных к воздействию кислорода неподвижных жидких фаз, часто с образованием соединений, обладающих меньшей разделительной способностью. В таком случае либо заменяют неподвижную жидкую фазу на более устойчивую к окислению, либо применяют газ-носитель, свободный от кислорода.

Если, например, используется носитель, характеризующийся достаточной адсорбционной активностью, то ее следует снизить настолько, чтобы состав неподвижной жидкой фазы не изменялся.

Химические реакции, проходящие с отдельными компонентами разделяемой смеси, изменяют ее состав, и на хроматограмме появляются пики соединений, отсутствующих в исходной смеси или, наоборот, отсутствуют пики, заведомо содержащихся соединений, которые необратимо удерживаются неподвижной жидкой фазой.

Следует, однако, иметь в виду, что иногда желательно образование лабильных соединений присоединения, так как они обеспечивают исключительно высокую селективность.

Давление паров и термостойкость

В качестве неподвижных жидких фаз можно в принципе использовать любые органические соединения, однако на практике чаще всего используются термически стабильные в условиях работы хроматографической колонки вещества.

Термостабильность неподвижной жидкой фазы определяется двумя факторами:

· уносом неподвижной жидкой фазы из колонки из-за имеющих место процессов термического разложения или испарения;

· помехами на хроматограмме, вызванными фоном паров неподвижной жидкой фазы или продуктами ее разложения.

Поскольку в газо-жидкостной хроматографии разделение компонентов смеси производится только в таком температурном интервале, когда нанесенная на твердый носитель неподвижная жидкая фаза представляет собой жидкость, каждая из используемых жидких фаз должна быть охарактеризована величиной нижнего и верхнего температурного предела ее использования.

Нижний температурный предел использования неподвижной жидкой фазы характеризуется величиной температуры плавления вещества, используемого в качестве неподвижной жидкой фазы.

Однако известно, что температура плавления вещества зависит от степени его чистоты. В этой связи при нанесении на твердый носитель небольшого количества неподвижной жидкой фазы температура плавления этого вещества может повышаться на несколько градусов вследствие адсорбционного взаимодействия неподвижной жидкой фазы с поверхностью носителя.

Поэтому в качестве нижнего температурного предела использования рекомендуется выбирать температуру на 5-10 оС выше температуры плавления чистого вещества.

Следует учитывать, что некоторые вещества, используемые как неподвижные жидкие фазы, не могут быть охарактеризованы определенной величиной нижнего температурного предела: к ним относятся вещества, для которых характерно стекловидное состояние, полимеры с большой молекулярной массой.

Температура плавления вещества зависит от плотности упаковки его молекул: вещества с относительно регулярной, плотной упаковкой характеризуются более высокой температурой плавления.

В этой связи для снижения нижнего температурного предела целесообразно использовать соединения, углеродные цепочки молекул которых содержат большое число разветвлений.

Наличие в молекуле атомных групп, вступающих в электростатическое или специфическое взаимодействие, повышает температуру плавления вещества. Особенно высокие значения температур плавления наблюдаются для соединений, молекулы которых содержат большое число гидроксильных групп.

Верхний температурный предел использования неподвижной жидкой фазы зависит от факторов, связанных с потерей неподвижной жидкой фазы и с чувствительностью детектора.

Потери неподвижной жидкой фазы из колонки могут быть обусловлены двумя процессами:

· физическими процессами, проявляющимися в форме испарения неподвижной жидкой фазы;

· химическими процессами, приводящими к разложению неподвижной жидкой фазы за счет термической деструкции.

Потери за счет испарения свойственны в основном мономерным неподвижным фазам, а потери за счет термодеструкции наблюдаются чаще всего для полимерных неподвижных жидких фаз.

Верхний температурный предел предложено определять такой температурой, при которой в течение трех месяцев непрерывного использования потеря неподвижной жидкой фазы по массе составляет около 2 %.

Если нанести на носитель неподвижную жидкую фазу в количестве на 10 % больше оптимального, то испарение из колонки 15-20 % неподвижной жидкой фазы практически не изменит ее эффективности, и такие колонки могут служить до трех лет, что вполне допустимо для аналитических целей.

Верхний температурный предел зависит также от условий разделения. Так, например, оптимальное количество неподвижной жидкой фазы на белом диатомовом носителе составляет 10-15 %. Если же для разделения необходимо применять колонки с небольшим количеством неподвижной жидкой фазы на носителе, потери 2-3 % неподвижной фазы изменяют качество разделения. Поэтому для подобных колонок верхний температурный предел по сравнению с основными данными снижается на 30-50 оС.

Верхний температурный предел полимерных неподвижных жидких фаз определяется температурой разрыва наименее стойких связей в молекуле полимера, при этом образуются низкомолекулярные летучие соединения, уносимые газом-носителем из колонки.

Для неподвижных фаз полимерной природы минимальная температура разрыва наблюдается для эфирных связей. Обычная эфирная связь начинает разрушаться уже при температуре 200 оС; эта температура и является предельной для использования многочисленных полиэфирных неподвижных жидких фаз.

Большей стабильностью обладают полимеры, содержащие простые связи углерод-углерод. Такие фазы можно использовать до 350 оС, однако существенным недостатком этих полимеров является их высокая температура плавления или размягчения.

Наиболее термостабильными неподвижными жидкими фазами являются кремнийорганические полимеры, например, метилсиликоны (верхний температурный предел 300-350 оС) и карборансилоксановые полимеры, основой полимерной цепи которых служит сферическая ячейка, в которую входят атомы бора, кремния и углерода (верхний температурный предел 400 оС).

Практика использования неподвижных жидких фаз для длительной аналитической работы показывает, что необходимо работать с неподвижными фазами при температурах на 20-30 оС ниже основных верхних температурных пределов.

И, наконец, на практический верхний температурный предел влияет также и чувствительность используемого детектора: чем выше чувствительность детектора, тем ниже верхний температурный предел использования данной неподвижной жидкой фазы.

Так, в случае пламенно-ионизационных детекторов на их максимальной чувствительности реальный верхний температурный предел использования оказывается на 50-60 оС ниже основного значения.

– Конец работы –

Эта тема принадлежит разделу:

Хроматографические методы. Общая характеристика методов

Хроматографические методы Общая характеристика методов... Характеристики хроматографического разделения компонентов анализируемой... Основные закономерности сорбционных процессов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Диатомовые носители

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ
Абсолютое большинство веществ живой и неживой природы и синтетических веществ, используемых в производстве самых разнообразных продуктов питания и непродовольственных товаров, представляют собой не

Компонентов анализируемой смеси
Результатом хроматографического разделения исследуемой пробы является хроматограмма. Различают внутреннюю и внешнюю хроматограммы. Внутренняя хроматограмма – это распределение разделен

Изотермы адсорбции
Изотермой адсорбции называется количественная зависимость между величиной адсорбции и равновесной концентрацией адсорбируемого вещества. В общем виде уравнение изотермы адсорбции записывае

Изотермы адсорбции и форма фронтов зон
Рассмотрим вопросы применения теории адсорбции к описанию хроматографических разделений. Основными задачами теории адсорбции в приложении к хроматографии являются получение ответов на д

Газовая хроматография
Газовая хроматография - метод разделения летучих соединений. Поскольку в процессе разделения анализируемые вещества должны находиться в газообразном состоянии, что достигается

Подвижная фаза. Характеристика основных представителей
При выборе газа-носителя следует учитывать, что природа газа-носителя оказывает влияние как на характеристики разделения компонентов анализируемой смеси в хроматографической колонке, так и на парам

Значения инкрементов функциональных групп и связей
Группа/связь ОМЧ-инкремент - СН2 - ОН = СН – ОН

Величины относительных молярных поправочных коэффициентов
бензол 1.00 метанол 2.46 метан 1.23 этанол 1.77

Величины относительных коэффициентов захвата электронов
Класс соединений Кэз Примеры алканы, алкены, алкины, алифатические эфиры и диены 0.01

Фотоионизационный детектор (ДФИ)
Детектор был предложен в 1968 г., имел нестабильные характеристики и почти не применялся. В конце 70-х начале 80-х годов началась новая эра в развитии ДФИ, связанная, главным образом, с его примене

Силы дисперсионного взаимодействия
Энергия дисперсионного взаимодействия двух сферических частиц описывается уравнением Лондона: , (84) где k - коэффициент пропорциональности, зависящий от потенциала ионизац

Силы ориентационного взаимодействия
Наконец, для двух частиц, обладающих дипольными моментами, возникает ориентационное взаимодействие, энергия которого описывается уравнением: . (87) Под взаимодействующими частицам

Силы полухимического и химического взаимодействий
Еще более прочные адсорбционные связи полухимического характера образуются либо при возникновении водородных связей, либо за счет образования комплексов переноса заряда. Образование водоро

Углеродные адсорбенты
Основными представителями этой группы адсорбентов являются: · графитированная термическая сажа; · активированный уголь; · углеродные молекулярные сита;

Оксид алюминия
Оксид алюминия является весьма термостойким и механически прочным адсорбентом; его удельная поверхность составляет около 200 м2/г. Из-за наличия кислотных и основных (по Льюису)

Органические сорбенты
Наибольшее применение получили пористые сополимеры стирола и дивинилбензола. Эти материалы получают суспензионной полимеризацией мономерных винильных производных (стирола, этилбензола), к которым д

Шкала относительной полярности неподвижных жидких фаз
Неподвижная фаза Р Неподвижная фаза Р сквалан диэтилоксалат

Неароматические углеводороды
Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают большими (по

Силиконы
Диметил- и метилфенилполисилоксаны относятся к числу наиболее часто применяемых неподвижных жидких фаз. Это объясняется несколькими причинами. Силиконы можно применять как при очень низких (

Фенилсиликоны
Наличие фенильных групп в фенилсиликонах приводит к усилению взаимодействия с ароматическими соединениями. Несколько более высокие величины удерживания характерны для полярных соединений. Отличие о

Спирты, эфиры и производные углеводов
Алифатические углеводороды очень плохо растворяются в неподвижных фазах такого типа и поэтому селективно отделяются от других органических соединений. Однако разделение самих гомологов парафинов не

Полигликоли
Эти неподвижные фазы плохо растворяют алифатические углеводороды, но обладают некоторой селективностью для отделения н-парафинов от изопарафинов и насыщенных углеводородов от ненасыщенных. Селектив

Сложные эфиры
Эфиры карбоновых и фосфорных кислот содержат в карбоксильных и фосфатных группах атомы кислорода, способные к образованию водородной связи. Поэтому при применении эфирных неподвижных фаз наблюдаютс

Жидкостная хроматография
Жидкостная хроматография - это метод разделения и анализа сложных смесей веществ, в котором подвижной фазой служит жидкость. Он применим для разделения более широкого круга

Характеристики растворителей, используемых в жидкостной хроматографии
Растворитель Индекс полярности Элюирующая сила (SiO2) Коротковолновая граница прозрачности Фторал

Способы борьбы с пульсациями.
1. Применение демпфирующих устройств. Это спиральные трубки специального профиля из нержавеющей стали, включенные последовательно или параллельно в систему между насосом и дозатором

Техника эксперимента в ТСХ
Активация пластин.Для повышения точности анализов рекомендуется проводить активацию пластин. Это связано с тем, что адсорбционная способность силикагеля и оксида алюминия уменьшает

Сверхкритическая флюидная хроматография
  В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид – вещество, находящееся в сверхкритическом состоянии и имеющее показатели, промежуточны

Важнейшие характеристики газов, сверхкритических флюидов и жидкостей
Характеристика Газы Сверхкритические флюиды Жидкости Плотность, г/см3 0,6 10–3

Критические величины для подвижных фаз в СФХ
Флюид Температура Тс, оС Давление рс, Па Плотность dc, г/см

Принятые термины и сокращения
Время миграции (tм) - время, необходимое компоненту для прохождения им эффективной длины капилляра (Lэфф) от зоны ввода пробы (начала капилляра)

Физико-химические основы метода капиллярного электрофореза
Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора

Капилляры
В системах КЭ используют капилляры из кварца, прозрачного в УФ-области спектра, с внешним полиимидным защитным покрытием. В случае детектирования внутри капилляра (on-line)

Источники высокого напряжения
Источники напряжения обеспечивают подачу постоянного напряжения в диапазоне от –25 до +25 кВ. Максимально допустимый ток в капилляре не должен превышать 200 мкА. В отношении ве

Ввод пробы
Типичный объем вводимой пробы в КЭ составляет 1–20 нл. Общепринято заполнять пробой не более 2 % объема капилляра, чтобы изначально не создавать широкую зону компонентов и обеспечить достаточное вр

Детекторы
Характеристики методов детектирования, используемых в КЭ, представлены в табл. 2. Указанные пределы детектирования позволяют оценить чувствительность того и

Чувствительность метода
Основным способом детектирования в КЭ является фотометрический, чувствительность которого не всегда достаточна, поскольку детектирование происходит в слое малого внутреннего

Качественный и количественный анализ
Для качественного и количественного анализа в КЭ обязательно проводят градуировку системы путем анализа нескольких смесей известного состава. Результатом градуировки являютс

Количественная обработка результатов анализа
Для количественного определения необходимо выбрать метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта

Объекты для анализа методом КЭ. Подготовка пробы
Первые аналитические приложения КЭ были связаны с разделением заряженных компонентов: наиболее подходящими оказались неорганические катионы и анионы, а также карбоновые кислоты. В биотехнологии КЭ

Особенности методики, практические рекомендации
Здесь будет рассмотрен вариант одновременного определения ряда катионов и анионов с использованием прибора «Капель-103РЕ». Для определения к

Количественный анализ
Количественная интерпретация хроматограмм является одним из наиболее ответственных заключительных этапов хроматографического анализа. Задачами количественной интерпретации хроматогр

Параметр h
Если проанализировать влияние возможных отклонений температуры колонки и скорости потока газа-носителя от средних значений, соизмеримых по длительности с продолжительностью регистрации пика на усто

Параметр hl
Влияние изменения условий процесса хроматографического разделения на параметр hl сказываются следующим образом: · флуктуации температуры при работе с обоими видами детекторов

Параметр А
Влияние изменения условий хроматографических разделений на параметр А (площадь пика) сводятся к следующему: · флуктуации температуры не искажают площадь пика при работе с дет

Методы триангуляции
Пик рассматривают как треугольник и площадь его рассчитывают как площадь треугольника. Известны три метода триангуляции (triangle – треугольник). Эти методы приближенные, поскольку площадь пика апп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги