рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Изотермы адсорбции и форма фронтов зон

Изотермы адсорбции и форма фронтов зон - раздел Полиграфия, Хроматографические методы. Общая характеристика методов Рассмотрим Вопросы Применения Теории Адсорбции К Описанию Хроматографических ...

Рассмотрим вопросы применения теории адсорбции к описанию хроматографических разделений.

Основными задачами теории адсорбции в приложении к хроматографии являются получение ответов на два вопроса:

· в какой последовательности зоны разделяемых веществ будут выходить из хроматографической колонки;

· какие условия в ходе процесса разделения необходимо соблюдать, чтобы фронты зон разделяемых компонентов были обостренными.

Процессы хроматографических разделений могут рассматриваться либо с позиций линейной и идеальной, либо с позиций нелинейной и неидеальной теории.

Линейная и идеальная теория является упрощенным вариантом нелинейной и неидеальной теории, поскольку предполагает существование следующих допущений:

· адсорбционное равновесие в процессе разделения устанавливается мгновенно, т.е. сорбционные связи устанавливаются мгновенно;

· процессом продольной диффузии разделяемых соединений в колонке можно пренебречь, т.е. перемешивание зон разделяемых компонентов не обусловлено процессом продольной диффузии.

 

Эти положения конечно же не соответствуют реальному эксперименту.

Для установления адсорбционных связей всегда требуется некоторое время, необходимое для диффузии молекул разделяемых соединений из подвижной фазы к поверхности адсорбента, время на диффузию этих молекул от поверхности зерна к центру, и наконец, время на установление адсорбционных связей.

Далее, в потоке подвижной фазы всегда имеет место процесс перемешивания зон разделяемых компонентов, т.е. существованием процесса продольной диффузии пренебрегать также нельзя.

Нелинейная и неидеальная теория обязательно учитывает эти факторы процесса разделения.

Однако для предварительных рассуждений вполне можно ограничиться представлениями линейной и идеальной теории, поскольку с технической стороны возможно организовать выполнение экспериментальных исследований таким образом, чтобы достаточно строго реализовать требования нелинейной и неидеальной теории:

· использовать для разделений адсорбент с очень малым диаметром гранул;

· использовать для разделений очень маленькую скорость подвижной фазы.

Эти условия эксперимента будут способствовать очень быстрому установлению адсорбционного равновесия и существенному снижению влияния процессов продольной диффузии на перемешивание зон разделяемых компонентов.

Таким образом, выводы линейной и идеальной теории оказываются очень вескими, поскольку если они предсказывают невозможность разделения компонентов данной смеси, то кинетические факторы нелинейной и неидеальной теории будут только усиливать эту невозможность. Если линейная и идеальная теория предсказывает возможность разделения, целесообразно попробовать реализовать эту возможность практически.

В этой связи рассмотрим, что дают представления линейной и идеальной теории с точки зрения обеспечения оптимальных условий для обострения фронтов зон разделяемых веществ.

Используем полученное ранее выражение для описания скорости перемещения фронта зоны по колонке:

.

Приведенное уравнение позволяет сделать весьма важный вывод – скорость перемещения фронта зоны, а следовательно, и оптимизация условий обострения фронтов зоны определяется видом изотермы адсорбции.

Рассмотрим вопросы формирования фронтов зон в случае описания процесса адсорбции изотермой Лэнгмюра.

Верхняя часть изотермы адсорбции, описывающая область высоких равновесных концентраций, соответствует головному, или переднему, фронту зоны. Нижняя часть изотермы, область низких равновесных концентраций, соответствует заднему фронту - хвостовой части зоны.

При хроматографическом разделении непрерывно, последовательно повторяется один и тот же элементарный акт адсорбции и десорбции и исследуемое соединение либо полностью находится в адсорбенте (адсорбция), либо полностью находится в объеме подвижной фазы (десорбция).

Величина для плотно упакованных колонок имеет очень малое численное значение и остается постоянной в течение всего процесса разделения.

Следовательно, для головной части изотермы адсорбции производная является величиной постоянной и малой по своему численному значению. Единица, деленная на малую величину, приводит к большим значениям скорости перемещения молекул, находящихся в этой части зоны.

Таким образом, молекулы, входящие в головную часть зоны, продвигаются быстро и с одинаковой скоростью, что благоприятствует созданию условий обострения фронта зоны.

Для хвостовой части зоны величина производной существенно больше по абсолютному значению; скорость перемещения молекул, находящихся в этой части зоны, уменьшается, причем уменьшается по-разному в соответствии с разными значениями производной; и фронт зоны, как следствие этого, размывается.

Таким образом, если процесс адсорбции описывается уравнением мономолекулярной адсорбции Лэнгмюра, то на хроматограмме передний фронт зоны обострен, а задний фронт – размыт.

К этому выводу можно прийти и при установлении физического смысла связи изотермы адсорбции и размывания фронтов зоны.

На начальном участке изотермы адсорбции, в области малых равновесных концентраций, хвосте зоны, на поверхности адсорбента много свободных адсорбционных центров, коэффициент распределения молекул исследуемого соединения, определяемый отношением концентрации в адсорбенте к концентрации в подвижной фазе - велик. В результате этого скорость перемещения молекул мала и различна для различных участков зоны.

Головная часть зоны соответствует участку изотермы полного насыщения адсорбционных центров, силы адсорбции уменьшены и скорость перемещения молекул высокая и одинаковая.

В случае изотермы полимолекулярной адсорбции Фрейндлиха для головной части зоны величины производных большие, следовательно, скорость перемещения молекул в зоне мала и различается по абсолютному значению, что приводит к размыванию головной части зоны. Хвостовая часть зоны описывается практически линейным участком и малым, по сравнению с головной частью, значением производной. Следовательно, хвостовая часть зоны выходит обостренной.

Рассмотрим третий случай, когда изотерма адсорбции линейна во всех областях равновесных концентраций. В этом случае величина производной остается постоянной, одинаковой для молекул головной и хвостовой части зоны и выходная кривая регистрируется симметричной.

Из приведенного материала следует весьма важный вывод, позволяющий реализовать максимальную эффективность разделения используемой хроматографической колонки. Поскольку следует стремиться к таким условиям процесса разделения, когда пики на хроматограмме регистрируются как симметричные, реализовать это возможно лишь в тех случаях, когда величины равновесных концентраций разделяемых соединений в подвижной фазе соответствуют закону Генри, т.е. располагаются на начальных линейных участках изотерм адсорбции.

 

 

 

1.2.2. Основные факторы размывания хроматографических пиков. Для того чтобы разделить бинарную смесь компонентов, необходимо, чтобы они находились в колонке разное время. Однако даже время пребывания отдельных молекул одного и того же вещества в большей или меньшей степени отличается от среднего значения, характерного для этого вещества.

Причиной этому являются процессы диффузии, конвекции и замедленного обмена между подвижной и неподвижной фазами.

Насадочные колонки независимо от их внутреннего диаметра представляют собой трубки, заполненные частицами сорбента, которые образуют стационарный зернистый слой. Поток газа фильтруется через этот слой, двигаясь по транспортным каналам, образуемым зазорами между частицами. За счет разных по длине путей перемещения молекул разделяемых соединений возникает специфический размывающий фактор, характеризуемый “вихревой” диффузией.


Рис. 12.
В капиллярных колонках имеется единственный транспортный канал вдоль ее оси. В этой связи в капиллярных колонках “вихревая” диффузия отсутствует, но возникает другой размывающий фактор, связанный с параболическим распределением скоростей по сечению канала, характеризуемый так называемой “тейлоровской” диффузией.

Вследствие такого “рассеяния” времени пребывания в колонке отдельных молекул концентрация вещества на выходе из колонки изменяется во времени, при этом профиль концентрации подчиняется уравнению функции нормального распределения ошибок Гаусса, которое характеризует распределение концентрации исследуемого соединения C в пространстве в фиксированный момент времени “х” от времени положения максимума хроматографического пика

(20)

где Смакс – величина концентрации вещества в точке максимума пика, численное значение которой рассчитывается из уравнения (20) при х = 0 и равная коэффициенту перед экспоненциальным членом уравнения Гаусса

. (21)

Параметр в уравнениях (20) и (21) называется средним квадратичным отклонением, а величину называют дисперсией. Этот параметр характеризует степень размывания кривой распределения случайных ошибок, а в случае хроматографических разделений – ширину регистрируемого хроматографического пика у основания (рис. 13).

Чтобы придать величине среднего квадратичного отклонения графическую интерпретацию, допустим, что в уравнении (20) отношение

. (22)

Тогда с учетом уравнения (20) можно записать:

. (23)

Отсюда, приравнивая показатели экспонент, получим х = .

Это означает, что полуширина хроматографического пика, измеренная на высоте, составляющей 0.607 от максимальной высоты пика, равна среднеквадратичному отклонению .

Кривая Гаусса имеет колоколообразную форму: наряду с максимумом она имеет две точки перегиба. Если к этим точкам перегиба провести касательные, то величина отрезка, отсекаемого касательными на оси абсцисс, характеризует ширину хроматографического пика у основания ω и оказывается равной 4 (рис. 14).


1.3 Теория теоретических тарелок

Теория теоретических тарелок разработана для описания процесса дистилляции, однако она является общей для всех многостадийных процессов и позволяет оценить эффективность колонки.

Теория теоретических тарелок является формальной и основана на представлении, что хроматографируемое вещество проходит через слой сорбента не непрерывным потоком, а порциями, распределяясь между подвижной и неподвижной фазами на отдельных элементарных участках слоя - так называемых «тарелках». Через каждую такую тарелку вещество проходит периодическими толчками. При этом предполагается, что за время каждого толчка, т. е. практически мгновенно, на тарелках успевает установиться равновесие распределения всех компонентов между подвижной и неподвижной фазами.

Таким образом, согласно этой теории, хроматографический процесс является многоступенчатым и состоит из большого числа актов сорбции=десорбции или растворения=испарения компонентов анализируемого вещества в хроматографической колонке, а сама колонка рассматривается как совокупность многих дискретных ступеней - тарелок, хотя в действительности слой адсорбента или пленка неподвижной жидкой фазы в колонке является непрерывным. Анализируемое вещество вместе с элюентом попадает на первую тарелку. Новая порция элюента, подаваемая на первую тарелку, приводит к новому распределению вещества между подвижной и неподвижной фазами, причем часть вещества с данной тарелки переносится на следующую. На этой тарелке также мгновенно устанавливается равновесие, а часть вещества уносится на следующие тарелки. Вследствие этого с каждой новой порцией элюента концентрация вещества на первой тарелке падает, а на последующих возрастает.

В результате такого перемещения и перераспределения хроматографируемое вещество оказывается не на одной, а на нескольких тарелках, причем на средних его концентрация достигает максимального значения по сравнению с соседними, так как свежие порции элюента, поступающие в колонку, встречают на первых тарелках все меньшие количества данного компонента в неподвижной фазе. Таким образом, вещество размывается по некоторой толщине слоя неподвижной фазы в колонке, по нескольким тарелкам, причем, чем сильнее размывание, тем большее число тарелок занимает вещество. Следовательно, число тарелок, занимаемых данным компонентом анализируемого вещества, может служить мерой степени размывания вещества по слою адсорбента, мерой эффективности колонки.

Такой прием замены реального процесса, протекающего в реальной хроматографической колонке непрерывно и неравновесно, эквивалентным по результатам многоступенчатым дискретным процессом, также приводящим к размыванию полосы компонента, позволил на основании теории скоростей вывести уравнение хроматографической кривой, т.е. дал математическую модель продвижения полосы компонента через колонку.

Гауссов характер хроматографического пика обусловлен беспорядочным статистическим характером перемещения большого числа частиц вещества в хроматографической колонке. Одни частицы передвигаются в ней быстрее, другие медленнее, и значения скорости перемещения имеют симметричный разброс относительно среднего значения, характеризующего поведение в колонке некоторой усредненной молекулы.

№1 №2 №3 №4 №5 №6 №7
           
         
       
     
   
 

 

Если длину слоя сорбента в колонке (длину колонки) L, на которой осуществляется разделение смеси веществ и расположено некоторое число n теоретических тарелок, необходимое для разделения анализируемой смеси веществ, разделить на это число n, то получается величина Н, называемая высотой, эквивалентной одной теоретической тарелке (ВЭТТ):

(1.21)

Высота эквивалентной теоретической тарелки представляет собой толщину слоя сорбента, необходимую для установления равновесного распределения вещества между подвижной и неподвижной фазами. Таким образом, число теоретических тарелок n и высота эквивалентной теоретической тарелки Н являются величинами, характеризующими эффективность хроматографической колонки. Высота эквивалентной теоретической тарелки выражают в единицах длины, как правило в миллиметрах.

Так как w = 4s мм, экспериментально Н можно определить как дисперсию, приходящуюся на единицу длины колонки L, мм, непосредственно из хроматограммы, используя полученное на хроматограмме значение ширины пика w у его основания для нахождения величины s:

(1.22)

Так как , то . Приняв время удерживания tR эквивалентом длины колонки, можно установить, что число теоретических тарелок n равно:

(1.23)

Если ширина пика измерена на середине его высоты, то w1/2 = 2,35 s и

(1.24)

Под эффективностью в хроматографии понимают способность системы "предотвращать" (ограничивать) размывание зон разделяемых веществ. Эффективность колонки тем выше, чем уже пик получается при том же времени удерживания, и измеряется числом теоретических тарелок. Хроматографическая колонка считается высокоэффективной, когда размывание полос небольшое, пики узкие, высота Н составляет 0,3-1 мм. В идеальном случае величина Н приближается к диаметру dp зерна сорбента. При уменьшении значения Н максимумы на хроматограмме становятся более острыми.

Для сравнения эффективности двух хроматографических колонок следует использовать приведенную высоту h тарелки:

(1.25)

Теория теоретических тарелок позволяет сравнить эффективность различных колонок, оценить качество сорбента и заполнения колонки. Но эта теория не позволяет выявить зависимость эффективности работы хроматографической колонки от скорости подачи подвижной фазы, природы и дисперсности сорбента, не может дать практических рекомендаций, позволяющих минимизировать размывание хроматографических пиков.

6.2. Оценка параметров эффективности и селективности хроматографической колонки

 

Для того, чтобы разделение двух последовательных пиков стало заметным, необходимо, чтобы расстояние между максимумами пиков на оси времени (Dt) было больше, чем ширина пиков у основания, выраженная через их стандартные квадратичные отклонения.

Установлено, что достаточное разделение происходит лишь в том случае, если: Dt = 2(s1 + s2).

При существовании соотношения Dt £ (s1 + s2), перекрытие (наложение) пиков настолько велико, что оба компонента воспринимаются детектором как одно вещество.

Практически полное разделение происходит при условии:

  Dt ³ 3 (s1 + s2) (26)

С помощью соотношений (24), (25) и (26) можно непосредственно установить, произошло разделение компонентов или нет. Однако величины Dt и s настолько сильно зависят от внешних условий, что становится невозможным на их основе сделать какие-либо выводы о параметрах разделительной колонки.

Подставив в уравнение (24) вместо Dt разность (t2 - t1) и разделив обе части уравнения на время удерживания первого компонента t1, получим

. (27)

Относительные величины и в уравнении (27) уже в значительно меньшей мере зависят от внешних условий и определяются главным образом параметрами колонки.

Из уравнения (27) следует, что главную роль в процессе разделения веществ в колонке играют:

· отношение значений абсолютных времен удерживания ;

· относительные стандартные отклонения пиков и .

Таким образом, определяющими для процесса разделения веществ являются следующие два свойства хроматографической колонки:

· первое характеризуется различием во времени, в течение которого колонка удерживает разделяемые компоненты, называется разделительным действием или селективностью и количественно оценивается величиной отношения для двух разделяемых соединений;

· второе определяет меру размывания каждого пика относительно среднего значения времени, т.е. относительную ширину пика, называется эффективностью разделения и количественно оценивается величиной отношения для каждого из разделяемых компонентов.

Под селективностью в самом общем смысле понимают способность хроматографической системы (сорбента и подвижной фазы) делить данную пару соединений. Как видно из изложенного в предыдущих разделах, роль хроматографической системы сводится, прежде всего к тому, чтобы обеспечить различие в скоростях перемещения компонентов. Чем больше это различие, тем сильнее раздвинуты максимумы пиков или пятна на пластине и тем лучше их разделение. Поэтому представляется логичным в качестве меры селективности использовать отношение скоростей перемещения компонентов.

Коэффициент селективности a является мерой относительного удерживания или относительной подвижности разделяемых веществ:

Рис.1.8. Хроматографические пики при неполном разделении компонентов
(1.31)

где t'R1 и t'R2 - исправленное время удерживания соответственно веществ 1 и 2,VR’1 и VR’2 - исправленный удерживаемый объем соответственно веществ 1 и 2, k'1 и k'2 - коэффициенты емкости этих веществ.

Если a = 1, разделение компонентов сложного вещества невозможно, так как их характеристики одинаковы и на хроматограмме образуется один пик.

Для разделения компонентов необходимо подобрать такие условия, чтобы разделяемые вещества перемещались по колонке с разными скоростями. Это достигается главным образом подбором соответствующей подвижной и неподвижной фазы. Так как a зависит от коэффициентов емкости k' разделяемых компонентов, то повысив селективность разделения этих компонентов можно, увеличить объем неподвижной фазы, т. е. увеличив длину колонки и объем содержащегося в ней сорбента или неподвижной жидкой фазы.

полное разделение (Rs > 1)
частичное разделение (0 < Rs < 1)
разделение отсутствует (Rs = 0)

На хроматограмме пики компонентов анализируемой смеси могут иметь различный вид. Они могут быть расположены совершенно отдельно друг от друга или в большей или меньшей степени накладываться друг на друга (рис.1.8).

Разделение двух соседних хроматографических пиков характеризуется разрешением Rs, (критерием разделения) которое описывается уравнением

, (1.32)

где w1, w2 - ширина пиков у их основания.

 

Для плохо разделяющихся пиков предложено несколько критериев:

 

 

Критерий разделения меняется от 0 до бесконечности. Полное разделение пиков достигается при Rs=1.

Кроме того критерий разделения можно представить в виде произведения:

 

Где Kc критерий селективности, который показывает избирательность хроматографической колонки по отношению к данной паре разделяемых веществ. Он показывает увеличение расстояния между максимумами в ходе хроматографического разделения:


Данная формула удовлетворительно описывает избирательность колонки с большими значениями времен удерживания. Если хотят охарактеризовать избирательность колонки для слабосорбирующихся веществ, в данную формулу подставляют исправленные времена удерживания.


Для количественного разделения компонентов вполне достаточно, чтобы Rs имело значение от 1 до 1,5. При Rs = 1 перекрывается только 2% площади пиков, при Rs = 1,5 два соседних пика разделены практически до нулевой (базовой) линии.

6.5. СТЕПЕНЬ РАЗДЕЛЕНИЯ И ЕЕ СВЯЗЬ С ПАРАМЕТРАМИ

ХРОМАТОГРАФИЧЕСКОЙ КОЛОНКИ

 

Для оценки степени разделения компонентов можно использовать параметры хроматографической колонки. При этом общее уравнение для эффективности разделения имеет вид:

, (39)

которое позволяет установить влияние числа теоретических тарелок (n) и коэффициента емкости колонки для второго компонента (k2) на величину степени разделения двух соединений.

С помощью этого уравнения можно рассчитать, какой эффективностью должна характеризоваться хроматографическая колонка для получения заданного значения степени разделения Rs при заданном значении емкости колонки по отношению ко второму компоненту k2 и заданном значении относительного удерживания разделяемых компонентов a.

Если в соотношении (39) число теоретических тарелок выразить через отношение длины колонки к высоте, эквивалентной теоретической тарелки , то поскольку в зафиксированных условиях процесса разделения большая часть параметров этого уравнения остается постоянными, величина степени разделения оказывается пропорциональной корню квадратному из длины хроматографической колонки .

Это соотношение показывает, что в первом приближении повысить эффективность процесса разделения можно простым увеличением длины колонки, при сохранении остальных параметров процесса разделения постоянными.

 

Первый сомножитель показывает, что достигаемое разделение пропорционально корню квадратному из числа теоретических тарелок n т.е. для увеличения разделения вдвое нужно увеличить эффективность колонки в 4 раза. Например, увеличить длину колонки в 4 раза, при этом время анализа увеличивается также в 4 раза.

Если α = 1, то RS = 0, т.е. разделения нет независимо от числа теоретических колонок n. Однако из характера функции α в уравнении видно, что наибольшее изменение могут привести к заметному увеличению разделения, особенно для тех случаев, когда значения α близки к 1. Если за счет подбора условий разделения удается изменить α с 1,1 до 1,2, это приводит к улучшению разделения в два раза. Очевидно, что значимым членом является селективность системы.

Если емкость колонки (третий сомножитель) принимает значение k = 0, то RS = 0, т.е. разделение отсутствует − оба разделяемых компонента элюируются как несорбируемые вещества (взаимодействия с НЖФ отсутствует). С ростом значения k степень разделения возрастает, при этом скорость анализа уменьшается.

Как правило, если эффективность колонки недостаточна, а скорость анализа − важный фактор, то идут следующим путем. Для увеличения эффективности используют колонку с более мелким по зернистости сорбентом, хотя при этом увеличивается и давление в колонке.

Следует отметить, что эффективность колонки меньше влияет на разделение, чем селективность и коэффициент емкости, тем не менее повышению эффективности придается большое значение.

– Конец работы –

Эта тема принадлежит разделу:

Хроматографические методы. Общая характеристика методов

Хроматографические методы Общая характеристика методов... Характеристики хроматографического разделения компонентов анализируемой... Основные закономерности сорбционных процессов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Изотермы адсорбции и форма фронтов зон

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ
Абсолютое большинство веществ живой и неживой природы и синтетических веществ, используемых в производстве самых разнообразных продуктов питания и непродовольственных товаров, представляют собой не

Компонентов анализируемой смеси
Результатом хроматографического разделения исследуемой пробы является хроматограмма. Различают внутреннюю и внешнюю хроматограммы. Внутренняя хроматограмма – это распределение разделен

Изотермы адсорбции
Изотермой адсорбции называется количественная зависимость между величиной адсорбции и равновесной концентрацией адсорбируемого вещества. В общем виде уравнение изотермы адсорбции записывае

Газовая хроматография
Газовая хроматография - метод разделения летучих соединений. Поскольку в процессе разделения анализируемые вещества должны находиться в газообразном состоянии, что достигается

Подвижная фаза. Характеристика основных представителей
При выборе газа-носителя следует учитывать, что природа газа-носителя оказывает влияние как на характеристики разделения компонентов анализируемой смеси в хроматографической колонке, так и на парам

Значения инкрементов функциональных групп и связей
Группа/связь ОМЧ-инкремент - СН2 - ОН = СН – ОН

Величины относительных молярных поправочных коэффициентов
бензол 1.00 метанол 2.46 метан 1.23 этанол 1.77

Величины относительных коэффициентов захвата электронов
Класс соединений Кэз Примеры алканы, алкены, алкины, алифатические эфиры и диены 0.01

Фотоионизационный детектор (ДФИ)
Детектор был предложен в 1968 г., имел нестабильные характеристики и почти не применялся. В конце 70-х начале 80-х годов началась новая эра в развитии ДФИ, связанная, главным образом, с его примене

Силы дисперсионного взаимодействия
Энергия дисперсионного взаимодействия двух сферических частиц описывается уравнением Лондона: , (84) где k - коэффициент пропорциональности, зависящий от потенциала ионизац

Силы ориентационного взаимодействия
Наконец, для двух частиц, обладающих дипольными моментами, возникает ориентационное взаимодействие, энергия которого описывается уравнением: . (87) Под взаимодействующими частицам

Силы полухимического и химического взаимодействий
Еще более прочные адсорбционные связи полухимического характера образуются либо при возникновении водородных связей, либо за счет образования комплексов переноса заряда. Образование водоро

Углеродные адсорбенты
Основными представителями этой группы адсорбентов являются: · графитированная термическая сажа; · активированный уголь; · углеродные молекулярные сита;

Оксид алюминия
Оксид алюминия является весьма термостойким и механически прочным адсорбентом; его удельная поверхность составляет около 200 м2/г. Из-за наличия кислотных и основных (по Льюису)

Органические сорбенты
Наибольшее применение получили пористые сополимеры стирола и дивинилбензола. Эти материалы получают суспензионной полимеризацией мономерных винильных производных (стирола, этилбензола), к которым д

Диатомовые носители
Исходным материалом для носителей служит светло-серое или красновато-коричневое аморфное вещество, представляющее собой обломки панцирей микроскопических диатомовых водорослей – диатомит.

Шкала относительной полярности неподвижных жидких фаз
Неподвижная фаза Р Неподвижная фаза Р сквалан диэтилоксалат

Неароматические углеводороды
Неароматические углеводороды, будучи неполярными, являются очень хорошими растворителями для всех анализируемых веществ углеводородного типа. На этих неподвижных фазах алканы обладают большими (по

Силиконы
Диметил- и метилфенилполисилоксаны относятся к числу наиболее часто применяемых неподвижных жидких фаз. Это объясняется несколькими причинами. Силиконы можно применять как при очень низких (

Фенилсиликоны
Наличие фенильных групп в фенилсиликонах приводит к усилению взаимодействия с ароматическими соединениями. Несколько более высокие величины удерживания характерны для полярных соединений. Отличие о

Спирты, эфиры и производные углеводов
Алифатические углеводороды очень плохо растворяются в неподвижных фазах такого типа и поэтому селективно отделяются от других органических соединений. Однако разделение самих гомологов парафинов не

Полигликоли
Эти неподвижные фазы плохо растворяют алифатические углеводороды, но обладают некоторой селективностью для отделения н-парафинов от изопарафинов и насыщенных углеводородов от ненасыщенных. Селектив

Сложные эфиры
Эфиры карбоновых и фосфорных кислот содержат в карбоксильных и фосфатных группах атомы кислорода, способные к образованию водородной связи. Поэтому при применении эфирных неподвижных фаз наблюдаютс

Жидкостная хроматография
Жидкостная хроматография - это метод разделения и анализа сложных смесей веществ, в котором подвижной фазой служит жидкость. Он применим для разделения более широкого круга

Характеристики растворителей, используемых в жидкостной хроматографии
Растворитель Индекс полярности Элюирующая сила (SiO2) Коротковолновая граница прозрачности Фторал

Способы борьбы с пульсациями.
1. Применение демпфирующих устройств. Это спиральные трубки специального профиля из нержавеющей стали, включенные последовательно или параллельно в систему между насосом и дозатором

Техника эксперимента в ТСХ
Активация пластин.Для повышения точности анализов рекомендуется проводить активацию пластин. Это связано с тем, что адсорбционная способность силикагеля и оксида алюминия уменьшает

Сверхкритическая флюидная хроматография
  В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид – вещество, находящееся в сверхкритическом состоянии и имеющее показатели, промежуточны

Важнейшие характеристики газов, сверхкритических флюидов и жидкостей
Характеристика Газы Сверхкритические флюиды Жидкости Плотность, г/см3 0,6 10–3

Критические величины для подвижных фаз в СФХ
Флюид Температура Тс, оС Давление рс, Па Плотность dc, г/см

Принятые термины и сокращения
Время миграции (tм) - время, необходимое компоненту для прохождения им эффективной длины капилляра (Lэфф) от зоны ввода пробы (начала капилляра)

Физико-химические основы метода капиллярного электрофореза
Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора

Капилляры
В системах КЭ используют капилляры из кварца, прозрачного в УФ-области спектра, с внешним полиимидным защитным покрытием. В случае детектирования внутри капилляра (on-line)

Источники высокого напряжения
Источники напряжения обеспечивают подачу постоянного напряжения в диапазоне от –25 до +25 кВ. Максимально допустимый ток в капилляре не должен превышать 200 мкА. В отношении ве

Ввод пробы
Типичный объем вводимой пробы в КЭ составляет 1–20 нл. Общепринято заполнять пробой не более 2 % объема капилляра, чтобы изначально не создавать широкую зону компонентов и обеспечить достаточное вр

Детекторы
Характеристики методов детектирования, используемых в КЭ, представлены в табл. 2. Указанные пределы детектирования позволяют оценить чувствительность того и

Чувствительность метода
Основным способом детектирования в КЭ является фотометрический, чувствительность которого не всегда достаточна, поскольку детектирование происходит в слое малого внутреннего

Качественный и количественный анализ
Для качественного и количественного анализа в КЭ обязательно проводят градуировку системы путем анализа нескольких смесей известного состава. Результатом градуировки являютс

Количественная обработка результатов анализа
Для количественного определения необходимо выбрать метод градуировки (внешнего стандарта (абсолютной градуировки), внутреннего стандарта

Объекты для анализа методом КЭ. Подготовка пробы
Первые аналитические приложения КЭ были связаны с разделением заряженных компонентов: наиболее подходящими оказались неорганические катионы и анионы, а также карбоновые кислоты. В биотехнологии КЭ

Особенности методики, практические рекомендации
Здесь будет рассмотрен вариант одновременного определения ряда катионов и анионов с использованием прибора «Капель-103РЕ». Для определения к

Количественный анализ
Количественная интерпретация хроматограмм является одним из наиболее ответственных заключительных этапов хроматографического анализа. Задачами количественной интерпретации хроматогр

Параметр h
Если проанализировать влияние возможных отклонений температуры колонки и скорости потока газа-носителя от средних значений, соизмеримых по длительности с продолжительностью регистрации пика на усто

Параметр hl
Влияние изменения условий процесса хроматографического разделения на параметр hl сказываются следующим образом: · флуктуации температуры при работе с обоими видами детекторов

Параметр А
Влияние изменения условий хроматографических разделений на параметр А (площадь пика) сводятся к следующему: · флуктуации температуры не искажают площадь пика при работе с дет

Методы триангуляции
Пик рассматривают как треугольник и площадь его рассчитывают как площадь треугольника. Известны три метода триангуляции (triangle – треугольник). Эти методы приближенные, поскольку площадь пика апп

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги