рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вільні осі. Головні осі інерції. Моменти інерції різних тіл

Вільні осі. Головні осі інерції. Моменти інерції різних тіл - Конспект, раздел Философия, Фізичні основи При Обертанні Тіла Навколо Довільно Обраної Осі В Загальному Випад-Ку Вісь Об...

При обертанні тіла навколо довільно обраної осі в загальному випад-ку вісь обертання або повертається, або переміщується відносно умовно не-рухомої системи відліку. Для того, щоб така вісь обертання залишалася в незмінному положенні, до неї необхідно прикласти певні зовнішні сили.

При обертанні однорідного симетричного тіла вісь обертання збері-гала б своє положення в просторі без впливу на неї ззовні. Вісь обертання тіла, положення якої в просторі зберігається без дії на неї будь-яких сил ззовні, називають вільною віссю тіла.

Для тіла будь-якої форми і з будь-яким розподілом маси існує три вза-ємно перпендикулярні осі, що проходять через центр інерції тіла, які мо-жуть служити вільними осями – їх називають головними осями інерції. У загальному випадку головні осі інерції тіла можуть бути обрані не в будь-якому довільному напрямку, а лише в певному, тобто вони фіксовані. В од-норідного тіла із площинною симетрією (наприклад, паралелепіпеда) фіксо-вані дві головні осі інерції. В однорідного тіла з осьовою симетрією (напри-клад, циліндра) фіксована лише одна з головних осей інерції (вісь цилінд-ра). В однорідного тіла із центральною симетрією (кулі) жодна з головних осей інерції не фіксована.

Моменти інерції відносно головних осей називають головними мо-ментами інерції тіла . У загальному випадку ці моменти різні:

Для тіла з осьовою симетрією два головні моменти інерції мають однакову величину, а третій відмінний від них: . Для тіла із цен-тральною симетрією всі три головні моменти інерції однакові:

Момент інерції тіла описується рівнянням (7.26). Масу речовини Δmi можна виразити через густину речовини ρ і об'єм . Густина речовини в будь-якій точці виражається співвідношенням:

(7.31)

Тут вираз ΔV→0 означає, що об'єм стягується до тієї точки тіла, де визначається густина ρ, але ΔV≠0, а обмежується деяким мінімальним об'ємом, у межах якого можна говорити про густину речовини. Таким чи-ном, враховуючи (7.31), величину моменту інерції можна виразити рів-нянням:

(7.32)

Сума (7.32) тим точніша, чим менші ΔVi. Отже, завдання знаходження мо-ментів інерції зводиться до обчислення інтеграла виду:

(7.33)

Для однорідних за густиною тіл

Розглянемо кілька окремих прикладів роз-рахунку моментів інерції однорідних симетричних тіл.

7.6.1. Момент інерції циліндра. Відносно головної осі інерції ОО (рис.7.8) момент інерції

Рис.7.8 Для визначення моменту інерції відносно осі

z' скористаємося теоремою Штейнера: момент інерції відносно довіль-ної осі z, паралельної головній осі інерції, дорівнює сумі головного моменту інерції й добутку маси тіла т на квадрат відстані між осями:

(7.34)

З доведенням теореми Штейнера можна ознайомитись у посібнику [1].

Вісь z' відстоїть від осі ОО на відстані . Тоді момент інерції циліндра відносно осі z' дорівнює:

.

7.6.2. Момент інерції товстостінного циліндра з порожниною відносно головної осі інерції.

Тут R1 й R2 – внутрішній і зовнішній радіуси циліндра відповідно:

– об’єм пустотілого циліндра.

Тоді:

7.6.3. Головний момент інерції тонкостінного циліндра. Для тонкостінного циліндра можна прийняти, що і , і

7.6.4. Момент інерції матеріальної точки m відносно довільної осі обертання z, що відстоїть на відстані від точки згідно з рівняннями (7.27) і (7.34) дорівнює: .

7.6.5. Момент інерції тонкого довго-го стержня з постійним перетином S будь-якої форми. Елемент об'єму dV стержня при обертанні його навколо головної осі інерції ОО (рис. 7.9) дорівнює . Тоді

 

Рис.7.9

Тут L – довжина стержня. Згідно з теоремою Штейнера момент інерції стержня відносно осі z дорівнює:

 

7.6.6. Момент інерції тонкого диска відносно осі, що співпадає з діаметром диска. Елементарний момент інерції

(рис.7.10). За умови, що товщина диска , момент інерції диска від-носно осі Z знайдемо за рівнянням:

 

7.6.7. Головний момент інерції кулі. Для однорідної кулі . Елементарний момент інерції (рис. 7.11). Згідно з теоремою Піфагора . Сферична система симетрична, і середні значення

Рис. 7.10 Рис. 7.11

 

. Прийнявши, що , знаходимо:

.

І для диска, і для кулі – маса однорідного тіла, ρ – густина речовини.

 

7.7. Тензор інерції

 

Розглянемо обертальний рух тіла відносно закріпленої точки О, котра співпадає з початком інерціальної системи відліку (рис 7.12).

Проведемо через точку О миттєву вісь ОА. Нехай – миттєва кутова швидкість тіла відносно ціеї осі. Момент імпульсу частинки цього тіла відносно точки О:

Рис.7.12.

Момент імпульсу всього тіла

Всі частинки тіла мають одну й ту саму кутову швидкість . Тому рівняння моменту імпульсу можна записати в проекціях на осі координат, наприклад:

Оскільки то

Подібні рівняння можна записати для та . Останнє рівняння має три коефіцієнти:

.

Кожен із цих коефіцієнтів залежить від миттєвої орієнтації тіла від-носно осей координат . Їх називають інерціальними коефіцієнтами або моментами інерції:

(7.35)

Аналогічно можна записати коефіцієнти для проекцій та . Врахо-вуючи всі коефіцієнти та рівняння, отримуємо систему рівнянь для всіх компонентів моменту імпульсу:

 

(7.36)

Сукупність дев’яти величин

(7.37)

називають тензором інерції тіла відносно точки О, а самі ці величини – компонентами цього тензора, або компонентами матриці (див. [4] та [5]).Сукупність рівнянь (7.36) вказує на те, що у випадках тіл довільної форми з довільним розподілом маси момент імпульсу не є простим добутком скаляра на вектор кутової швидкості. Тому взагалі напрямок вектора не співпадає з напрямком вектора .

Величини називають діагональними компонентами тензора, а всі інші – недіагональними. Вони симетричні: . Діагональні компоненти, наприклад є сумою добутків кожної маси на квадрат її відстані від осі обертання, тому їх називають моментами інерції відносно осі.

Якщо – густина тіла в точці, радіус-вектор якої є , то кожен мо-мент інерції можна записати у вигляді інтегралів, наприклад:

.

Очевидно, що сума діагональних компонентів

(7.38)

На підставі рівняння (7.38) обчислимо головний момент інерції однорідної кулі радіуса , мас якої :

що співпадає з результатами (7.6.7).

 

– Конец работы –

Эта тема принадлежит разделу:

Фізичні основи

Механіки... Конспект лекцій з курсу загальної фізики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вільні осі. Головні осі інерції. Моменти інерції різних тіл

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

I. Попередні поняття. Загальні положення
Механікою називають розділ фізики, присвячений вивченню зако-номірностей механічного руху матеріальних тіл та взаємодії між ними. При цьому механіка не вникає у внутрішню будову тіл. Під механічним

Задання положення матеріальної точки в просторі
Для вивчення закономірностей руху матеріальної точки застосову-ють три способи задання положення цієї точки в просторі: векторний, координатний і природний (або натуральний). Рух матеріальної точки

Швидкість матеріальної точки
Нехай матеріальна точка m рухається по траєкторії АВ (рис. 2.2). Траєкторією точки називають послідовну сукупність положень її у просторі, тобто лінію, описувану точкою, що рухається.

Прискорення матеріальної точки
Якщо швидкість точки змінюється за величиною чи за напрямком, або за величиною і за напрямком, то для характеристики такого руху вводять поняття прискорення. Розглянемо загальний випадок з

Приклади розв’язання задач
1. З одного і того самого місця почали рівноприскорено рухатися в одному напрямку дві точки, причому друга почала свій рух через 2 с після першої. Перша точка рухалася з початковою швидкістю

III. Кінематика обертального руху
Рух абсолютно твердого тіла називають обертальним, якщо всі його точки, рухаючись в паралель

Класична механіка. Межі її застосування
Кінематика вивчає рух матеріальних тіл без врахування причин, які викликали цей рух. Динаміка вивчає рух матеріальних тіл, враховуючи ці причини, тобто вона вивчає зв’язок між взаємодією одного тіл

Інерціальні системи відліку
Внаслідок дії на тіло з боку інших тіл це тіло може змінювати стан свого механічного руху, а також форму та розміри. Для опису механічної дії одного тіла на інше вводять поняття сили. Силою, що діє

Маса та імпульс тіла. Другий закон Ньютона
Основним завданням динаміки є виявлення законів зміни механічного руху тіл під дією прикладених до них сил. З дослідів випливає, що під дією сили

Третій закон Ньютона
Досліди показують, що механічний вплив одного тіла на інше являє собою взаємодію: якщо тіло 1 діє на тіло 2, то й тіло 2 діє

Принцип відносності Галілея
Нехай у початковий момент часу дві інерціальні системи від-ліку

Закон збереження імпульсу замкненої системи тіл
Розглянемо систему, що складається з n матеріальних точок (тіл). Сили , з якими тіла с

Реактивний рух
Реактивний рух – це рух ракети під дією сили віддачі струменя газів, що витікає з сопла реактивного двигуна. Знайдемо швидкість раке-ти в залежності від зміни її маси. Нехай у момент часу

Приклад розв’язання задач
Тіло ковзає по похилій площині, що утворює з горизонтом кут . Пройшовши відстань

Енергія, робота і потужність
Основною умовою існування матерії є її рух, що проявляється у всіляких формах. Кожна форма руху має свою якісну й кількісну харак-теритику, міру. Так, мірою поступального руху тіла є його імпульс.

Енергія кінетична та потенціальна. Закон збереження енергії
У механіці розрізняють два види енергії: кінетичну і потен-ціальну

Зіткнення двох тіл
Прикладом використання законів збереження імпульсу та енергії замкненої системи тіл може бути розгляд зіткнення двох тіл. Для спрощен-ня викладу розглянемо центральний удар двох тіл. Удар називають

Приклад розв’язання задач
Дві ідеально пружні кульки масами m1 та m2 рухаються уздовж однієї й тієї самої прямої зі швидкостями

Рух тіл відносно неінерціальних систем відліку. Сили інерції
  Основним рівнянням руху матеріальної точки відносно інерціальної системи відліку є рівняння, що виражає другий закон Ньютона:

Приклад розв’язання задач
На 60° півн. ш. паровоз масою 100 т їде з півдня на північ зі швидкістю 72 км/год по залізничній колії, прокладеній по меридіані. Знайти величину і напрямок тієї сили, з якою паровоз діє на рейки в

VII. Динаміка обертального руху
  При дослідженні обертального руху системи, що складається зі східчастого шківа, хрестовини та вантажів m, котрі пересуваються, (рис.7.1), легко переконатися, що кутове

Момент сили й пари сил відносно точки
  Обертати тіло можна навколо точки або навколо осі, тому розрізня-ють момент с

Момент сили відносно осі
Нехай на тіло із закріпленою віссю z діє довільно спрямована сила (рис. 7.4). Т

Момент імпульсу матеріальної точки
Нехай деяка матеріальна точка m рухається зі швидкістю , як пока-зано на рис. 7.5. Мом

Закон збереження моменту імпульсу
Розглянемо рівняння (7.17) для системи матеріальних точок, що взає-модіють між собою. У загальному випадку для кожної

Основне рівняння динаміки обертального руху
Обертове тіло (рис. 7.7) розіб'ємо умовно на N елементарних об'ємів масами Δmi. Момент імпульсу

Кінетична енергія обертального руху тіла
  Умовно розіб'ємо тіло на N елементарних мас Δmi (рис.7.13). Кінетична енергія однієї такої маси дорівнює:

Гіроскоп. Прецесія гіроскопа
Гіроскопом називають масивне симетричне тіло, що обертається з великою швидкістю навколо осі

Приклади розв’язання задач
Задача 1. Однорідний тонкий важкий стержень довжини висить на горизонтальні

Закон всесвітнього тяжіння. Вільне падіння тіл
У результаті узагальнення численних спостережень, експерименталь-них і теоретичних досліджень (як своїх власних, так й інших дослідників) І.Ньютон в 1687 р. сформулював закон всесвітнього тяжіння:

Поле тяжіння
Закон всесвітнього тяжіння дає кількісну оцінку взаємодії, але не розкриває механізму тяжіння. Практика показує, що сила тяжіння не залежить від щільності навколишнього середовища. Таку взаємодію м

Маса інерційна та маса гравітаційна
  Маса – це фізична характеристика матеріальних об’єктів, яка є мірою і інерційних і гравітаційних властивостей. Виразником інерційних власти-востей тіла маса

Космічні швидкості
  Космічні швидкості – це характерні швидкості руху тіла в гравітацій-ному полі. Перша з них – це швидкість, яку потрібно надати тілу, щоб воно стало супутником Землі. Числов

Приклади розв’язання задач
  1). Із нескінченності на поверхню Землі падає метеорит масою

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги