Вычисление определителя методом исключения Гаусса - раздел Философия, Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений Из Курса Линейной Алгебры Известно, Что Определитель Треугольной Матрицы Раве...
Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов. В результате метода исключений Гаусса система линейных уравнений (3.2) с квадратной матрицей A приводится к эквивалентной ей системе (3.8) с треугольной матрицей An. Поэтому
det A = (-1)s det An,
где s - число перестановок строк, (s = 0, если использовался метод Гаусса по схеме единственного деления).Таким образом,
det A = (-1)sa11 aa …a (3.17)
Итак, для вычисления определителя det A необходимо выполнить процедуру прямого хода в методе Гаусса для системы уравнений Ax = 0, затем найти произведение главных элементов, стоящих на диагонали треугольной матрицы и умножить это произведение на (-1)s, где s - число перестановок строк.
Пример 3.3.
Вычислим определитель det A =
2.0 1.0 0.1 1.0
0.4 0.5 4.0 8.5
0.3 1.0 1.0 5.2
1.0 0.2 2.5 1.0
Данный определитель совпадает с определителем системы, рассмотренной в примере 3.1. Он равен произведению диагональных элементов треугольной матрицы (3.13):
det A = 2.0 0.30 16.425 1.12 = 11.0376.
Если же обратиться к примеру 3.2, то, учитывая, что была одна перестановка строк, т.е. s = 1, получим:
det A = (-1) 2.0 (-1.15) 4.28478 1.11998 = 11.0375.
Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...
Корректность
Определим вначале понятие устойчивости решения.
Решение задачи y* называется устойчивым по исходным данным x*, если оно зависит от исходных данны
Вычислительные методы
Под вычислительными методами будем понимать методы, которые используются в вычислительной математике для преобразования задач к виду, удобному для реализации на ЭВМ. Подробнее с различными к
ЛЕКЦИЯ 9
Тема: Элементы теории погрешностей Определение. Пусть u и — точное и приближенное значение некоторой величины соответственно. Тогда абсолютной погрешностью п
Метод Ньютона (метод касательных)
вать следующий критерий окончания итераций метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство
|xn - xn -
Метод ложного положения
Рассмотрим еще одну модификацию метода Ньютона.
Пусть известно, что простой корень x* уравнения f(x) = 0 находится на отрезке [a, b] и на одном из ко
Постановка задачи
Требуется найти решение системы линейных уравнений:
a11x1 + a12 x2 + a13x3
Метод исключения Гаусса с выбором главного элемента по столбцу
Хотя метод Гаусса является точным методом, ошибки округления могут привести к существенным погрешностям результата. Кроме того исключение по формулам (3.7) нельзя проводить, если элемент главной ди
Метод простой итерации Якоби
Метод Гаусса обладает довольно сложной вычислительной схемой. Кроме того, при вычислениях накапливается ошибка округления, что может привести к недостаточно точному результату. Рассмотрим метод про
Метод Зейделя
Модификацией метода простых итераций Якоби можно считать метод Зейделя.
В методе Якоби на (k+1)-ой итерации значения x, i = 1, 2, …, n. вычисляются подстановкой
Постановка задачи
Задача приближения (аппроксимации) функций заключается в том, чтобы для данной функции построить другую, отличную от нее функцию, значения которой достаточно близки к значениям данной функции. Така
Приближение функции многочленами Тейлора
Пусть функция y = f(x) определена в окрестности точки a и имеет в этой окрестности n + 1 производную. Тогда в этой окрестности справедлива формула Тейлора:
Интерполяция функции многочленами Лагранжа
Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узл
Аппроксимация функций. Метод наименьших квадратов
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi
Постановка задачи численного интегрирования
Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона - Лейбница:
I == F(b) - F(a), (5.1)
где
Метод прямоугольников
Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f(x
Метод трапеций
Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим
Метод Симпсона (метод парабол)
Заменим график функции y = f(x) на отрезке [xi, xi+1], i = 0, 2, … , n - 1, параболой, проведенной через точки (xi
Правило Рунге практической оценки погрешности
Оценки погрешности по формулам (5.4), (5.8) и (5.12) являются априорными. Они зависят от длины элементарного отрезка h, и при достаточно малом h справедливо приближенное равенство:
Постановка задачи Коши
Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид:
y (t) = f(t, y(t)). (6.1)
Решением уравнения (6.1) являе
Метод Эйлера
Простейшим методом решения задачи Коши является метод Эйлера.
Будем решать задачу Коши
y (t) = f(t, y(t)).
y(t0
Модифицированные методы Эйлера
Первый модифицированный метод Эйлера. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения искомой функции y в точках t = ti + с помощ
Метод Рунге - Кутта
Метод Рунге - Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге - Кутта.
Рассмотрим задачу Кош
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов