Реферат Курсовая Конспект
Интерполяция функции многочленами Лагранжа - раздел Философия, Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений Рассмотрим Другой Подход К Приближению Функции Многочленами. Пусть Функция ...
|
Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узлов xi [a, b], i = 0, 1, … , n. Например, эти значения получены в эксперименте при наблюдении некоторой величины в определенных точках или в определенные моменты времени x0, x1, … , xn. Обозначим эти значения следующим образом: yi = f(xi), i = 0, 1, … , n. Требуется найти такой многочлен P(x) степени m,
P(x) = a0 + a1x + a2x2 + … + amxm, (4.5)
который бы в узлах xi, i = 0, 1, … , n принимал те же значения, что и исходная функция y = f(x), т. е.
P(xi) = yi, i = 0, 1, … , n. (4.6)
Многочлен (4.5), удовлетворяющий условию (4.6), называется интерполяционным многочленом.
Другими словами, ставится задача построения функции y = P(x), график которой проходит через заданные точки (xi, yi), i = 0, 1, … , n (рис. 4.1).
Рис. 4.1
Объединяя (4.5) и (4.6), получим:
a0 + a1xi + a2x + … + amx = yi, i = 0, 1, … , n. (4.7)
В искомом многочлене P(x) неизвестными являются m +1 коэффициент a0 , a1, a2, …, am. Поэтому систему (4.7) можно рассматривать как систему из n +1 уравнений с m +1 неизвестными. Известно, что для существования единственного решения такой системы необходимо , чтобы выполнялось условие: m = n. Таким образом, систему (4.7) можно переписать в развернутом виде:
a0 + a1 x0 + a2x + … + anx = y0
a0 + a1 x1 + a2x + … + anx = y1
a0 + a1 x2 + a2x + … + anx = y2 (4.8)
.
a0 + a1 xn + a2x + … + anx = yn
Вопрос о существовании и единственности интерполяционного многочлена решает следующая теорема:
Теорема 4.1. Существует единственный интерполяционный многочлен степени n, удовлетворяющий условиям (4.6).
Имеются различные формы записи интерполяционного многочлена. Широко распространенной формой записи является многочлен Лагранжа
Ln(x) = = . (4.9)
В частности, для линейной и квадратичной интерполяции по Лагранжу получим следующие интерполяционные многочлены:
L1(x) = y0+ y1,
L2(x) = y0+ y1+ y2.
Пример 4.3.
Построим интерполяционный многочлен Лагранжа по следующим данным:
x | |||||
y | |||||
Степень многочлена Лагранжа для n +1 узла равна n. Для нашего примера многочлен Лагранжа имеет третью степень. В соответствии с (4.9)
L3(x) = 1+3 + 2 + 5 = 1 + x - x2 + x3.
Пример 4.4.
Рассмотрим пример использования интерполяционного многочлена Лагранжа для вычисления значения заданной функции в промежуточной точке. Эта задача возникает, например, когда заданы табличные значения функции с крупным шагом, а требуется составить таблицу значений с маленьким шагом.
Для функции y = sinx известны следующие данные.
x | /6 | /3 | /2 | ||
y | ? | ||||
Вычислим y(0.25).
Найдем многочлен Лагранжа третьей степени:
L3(x) = 0 + +
+ 1.
При x = 0.25 получим y(0.25) = sin 0.25 0.249.
Погрешность интерполяции. Пусть интерполяционный многочлен Лагранжа построен для известной функции f(x). Необходимо выяснить, насколько этот многочлен близок к функции в точках отрезка [a, b], отличных от узлов. Погрешность интерполяции равна |f(x) - Pn(x)|. Оценку погрешности можно получить на основании следующей теоремы.
Теорема 4.2. Пусть функция f(x) дифференцируема n +1 раз на отрезке [a, b], содержащем узлы интерполяции xi [a, b], i = 0, 1, … , n. Тогда для погрешности интерполяции в точке x [a, b] справедлива оценка:
|f(x) - Ln(x)| |n+1(x)|, (4.10)
где
Mn+1 = |f(n+1)(x)|,
n+1(x) = (x - x0)(x - x1)…. (x - xn).
Для максимальной погрешности интерполяции на всем отрезке [a, b] справедлива оценка:
|f(x) - Ln(x)| |n(x)| (4.11)
Пример 4.5.
Оценим погрешность приближения функции f(x) = в точке x = 116 и на всем отрезке [a, b], где a = 100, b = 144, с помощью интерполяционного много члена Лагранжа L2(x) второй степени, построенного с узлами x0 = 100, x2 = 144.
Найдем первую, вторую и третью производные функции f(x):
f (x)= x - 1/2, f "(x)= - x -3/2, f(x)= x -5/2.
M3 = | f(x)| = 100 -5/2 = 10 -5.
В соответствии с (4.9) получим оценку погрешности в точке x = 116:
| - L2(116)| |(116 - 100)(116 - 121)(116 - 144)| = 10 -516528 = 1.410 - 3.
Оценим погрешность приближения функции f(x) = на всем отрезке в соответствии с (4.11):
| - L2(x)| |(x - 100)(x - 121)(x -144)| 2.510-3.
– Конец работы –
Эта тема принадлежит разделу:
Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Интерполяция функции многочленами Лагранжа
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов