Реферат Курсовая Конспект
Аппроксимация функций. Метод наименьших квадратов - раздел Философия, Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений В Инженерной Деятельности Часто Возникает Необходимость Описать В Виде Функци...
|
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi, yi), i = 0, 1, 2,... , n, где n - общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности (рис. 2.5)
Рис.4.2
При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы "сгладить" экспериментальные погрешности, вычислять значения функции в точках, не содержащихся в исходной таблице.
Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость f(x), при которой
S =, (4.12)
обращается в минимум.
Погрешность приближения оценивается величиной среднеквадратического уклонения
= . (4.13)
В качестве функциональной зависимости рассмотрим многочлен
Pm(x)=a0 + a1x + a2x2+...+amxm. (4.14)
Формула (4.12) примет вид
S =
Условия минимума S можно записать, приравнивая нулю частные производные S по всем переменным a0, a1, a2, … , am. Получим систему уравнений
= -= 0, или
= 0, k = 0, 1, … , m. (4.15)
Систему уравнений (4.15) перепишем в следующем виде:
a0+ a1+ … +am= , k = 0, 1, … , m (4.16)
Введем обозначения:
ck = , bk = .
Система (4.16) может быть записана так:
a0ck + a1ck+1 + … + ck+mam = bk, k = 0, 1, … , m. (4.17)
Перепишем систему (4.17) в развернутом виде:
c0a0 + c1a1 + c2a2… + cmam = b0
c1a0 + c2a1 + c3a2… + cm+1am = b1
(4.18)
cma0 + cm+1a1 + cm+2a2… + c2mam = bm
Матричная запись системы (4.18) имеет следующий вид:
Ca = b. (4.19)
Для определения коэффициентов ak, k = 0, 1, … , m, и, следовательно, искомого многочлена (4.14) необходимо вычислить суммы ck, bk и решить систему уравнений (4.18). Матрица C системы (4.19) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при решении.
Погрешность приближения в соответствии с формулой (4.13) составит
= . (4.20)
Рассмотрим частные случаи m =1 и m = 2.
1. Линейная аппроксимация (m = 1).
P1(x) = a0 + a1x.
c0 = = n + 1; c1 = = ; c2 = ; (4.21)
b0 = = ; b1 = = . (4.22)
c0 c1 n+1
C = = ,
c1 c2
b = (b0, b1)T = (,)T.
Решение системы уравнений Ca = b найдем по правилу Крамера:
a0 = , a1 = ,
где C - определитель матрицы C, аCi - определитель матрицы Ci, полученной из матрицы C заменой i-го столбца столбцом свободных членов b, i = 1, 2.
Таким образом,
a0 = , a1 = . (4.23)
Алгоритм 4.1 (Алгоритм метода наименьших квадратов. Линейная аппроксимация).
Шаг 1. Ввести исходные данные: xi, yi, i=0, 1, 2, ... , n.
Шаг 2. Вычислить коэффициенты c0, c1, b0, b1 по формулам (4.21), (4.22).
Шаг 3. Вычислить a0, a1 по формулам (4.23).
Шаг 4. Вычислить величину погрешности
1 = . (4.24)
Шаг 5. Вывести на экран результаты: аппроксимирующую линейную функцию P1(x) = a0 + a1x и величину погрешности 1.
2. Квадратичная аппроксимация (m = 2).
P2(x) = a0 + a1x + a2x2.
c0 == n+1; c1 ==; c2 =; c3 =; c4 =. (4.25)
b0 ==; b1 ==; b2 = . (4.26)
c0 c1 c2
C = c1 c2 c3 .
c2 c3 c4
b = (b0, b1, b2)T .
Решение системы уравнений Ca = b найдем по правилу Крамера:
ai = , i = 0, 1,
где C - определитель матрицы C, аCi - определитель матрицы Ci, полученной из матрицы C заменой i-го столбца столбцом свободных членов b.
C = c0c2c4 + 2c1c2c3 - c - сc4 - cc0. (4.27)
b0 c1 c2
C1 = b1 c2 c3 = b0c2c4 + b2c1c3 + b1c2c3 - b2c- b1c1c4 - b0c. (4.28)
b2 c3 c4
c0 b0 c2
C2 = c1 b1 c3 = b1c0c4 + b0c2c3 + b2c1c2 - b1c- b0c1c4 - b2c0c3. (4.29)
c2 b2 c4
c0 c1 b0
C3 = c1 c2 b1 = b2c0c2 + b1c1c2 + b0c1c3 - b0c- b2c - b1c0c3. (4.30)
c2 c3 b2
a0 = , a1 = , a2 = . (4.31)
Алгоритм 4.2 (Алгоритм метода наименьших квадратов. Квадратичная аппроксимация).
Шаг 1. Ввести исходные данные: xi, yi, i=0, 1, 2, ... , n.
Шаг 2. Вычислить коэффициенты c0, c1, c2, c3, c4, b0, b1, b2, по формулам (4.25), (4.26).
Шаг 3. Вычислить C, C1, C2, C3 по формулам (4.27) - (4.30).
Шаг 4. Вычислить a0, a1, a2 по формулам (4.31).
Шаг 5. Вычислить величину погрешности
2 = . (4.32)
Шаг 5. Вывести на экран результаты : аппроксимирующую квадратичную функцию P2(x) = a0 + a1x + a2x2 и величину погрешности 2.
Пример 4.6.
Построим по методу наименьших квадратов многочлены первой и второй степени и оценим степень приближения. Значения yi в точках xi , i =0, 1, 2, 3, 4 приведены в таблице 2.3.
Таблица 4.1
i | ||||||
xi | ||||||
yi | -1 | |||||
Вычислим коэффициенты c0, c1, c2, c3, c4, b0, b1, b2, по формулам (4.25), (4.26):
c0 = 5; c1 = 15; c2 = 55; c3 = 225; c4 = 979;
b0 = 12; b1 = 53; b2 = 235.
1. Линейная аппроксимация (m =1).
Система уравнений для определения коэффициентов a0 и a1 многочлена первой степени P2(x) = a0 + a1x + a2x2 имеет вид
5a0 + 15a1 = 12
15a0 + 55a1 = 53
По формулам (4.23) найдем коэффициенты a0 и a1:
a0 = -2.7, a1 = 1.7.
P1(x) = a0 + a1x = -2.7 + 1.7x.
2. Квадратичная аппроксимация (m =2).
Система уравнений для определения коэффициентов a0, a1 и a2 многочлена второй степени P2(x) = a0 + a1x + a2x2 имеет вид
5a0 + 15a1 + 55a2 = 12
15a0 + 55a1 + 225a2 = 53
55a0 + 225a1 + 979a2 = 235
По формулам (4.31) найдем коэффициенты a0, a1 и a2:
a0 -2.20, a1 1.27, a2 0.07.
P2(x) = a0 + a1x + a2x2 = -2.20 + 1.27x + 0.07x2.
Сравним значения, рассчитанные для функциональной зависимости, с исходными данными. Результаты приведены в табл.2.4.
Таблица 4.2
i | ||||||
xi | ||||||
yi | -1 | |||||
P1(xi) | -1 | 0.7 | 2.4 | 4.1 | 5.8 | |
P2(xi) | -1 | 0.62 | 2.24 | 6.9 | ||
Погрешность приближения в соответствии с формулами (4.24) и (4.32) составит
1 = = 0.245.
2 = = 0.084.
– Конец работы –
Эта тема принадлежит разделу:
Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Аппроксимация функций. Метод наименьших квадратов
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Твитнуть |
Новости и инфо для студентов