рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вычислительные методы

Вычислительные методы - раздел Философия, Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений Под Вычислительными Методами Будем Понимать Методы, Которые Используют...

Под вычислительными методами будем понимать методы, которые используются в вычислительной математике для преобразования задач к виду, удобному для реализации на ЭВМ. Подробнее с различными классами вычислительных методов можно познакомиться, например, в [1]. Мы же рассмотрим два класса методов, используемых в нашем курсе.

1. Прямые методы. Метод решения задачи называется прямым, если он позволяет получить решение после выполнения конечного числа элементарных операций. Наименование элементарной операции здесь условно. Это может быть, например, вычисление интеграла, решение системы уравнений, вычисление значений функции и т. д. Важно то, что ее сложность существенно меньше, чем сложность основной задачи. Иногда прямые методы называют точными, имея в виду, что при отсутствии ошибок в исходных данных и при выполнении элементарных операций результат будет точным. Однако, при реализации метода на ЭВМ неизбежны ошибки округления и, как следствие, наличие вычислительной погрешности.

2. Итерационные методы. Суть итерационных методов состоит в построении последовательных приближений к решению задачи. Вначале выбирают одно или несколько начальных приближений, а затем последовательно, используя найденные ранее приближения и однотипную процедуру расчета, строят новые приближения. В результате такого итерационного процесса можно теоретически построить бесконечную последовательность приближений к решению. Если эта последовательность сходится (что бывает не всегда), то говорят, что итерационный метод сходится. Отдельный шаг итерационного процесса называется итерацией.

Практически вычисления не могут продолжаться бесконечно долго. Поэтому необходимо выбрать критерий окончания итерационного процесса. Критерий окончания связан с требуемой точностью вычислений, а именно: вычисления заканчиваются, когда погрешность приближения не превышает некорректной.

Пример 1.1.

Покажем, что задача вычисления определенного интеграла I = корректна. Пусть f*(x) - приближенно заданная функция и I* = . Очевидно, приближенное решение I* существует и единственно. Определим абсолютную погрешность f* с помощью равенства (f*) = |f(x) - f*(x)|. Так как

(I) = |I - I*| = || (b - a)(f*),

то для любого > 0 неравенство (I) < будет выполнено, если будет выполнено условие (f*) < , где = /(b - a).

Таким образом, решение I* устойчиво. Все три условия корректности задачи выполнены.

Пример 1.2.

Покажем, что задача вычисления производной u(x) = f (x) приближенно заданной функции некорректна.

Пусть f*(x) - приближенно заданная на отрезке [a, b] непрерывно дифференцируемая функция и u*(x) = (f*(x)). Определим абсолютные погрешности следующим образом: (f*) = |f(x) - f*(x)|, (u*) = |u(x) - u*(x)|.

Возьмем, например, f*(x) = f(x) + sin(x/2), где 0 < < 1. Тогда, u*(x) = u(x) + -1cos(x/2), (u*) = -1, т. е. погрешность задания функции равна , а погрешность производной равна -1. Таким образом, сколь угодно малой погрешности задания функции f может отвечать сколь угодно большая погрешность производной f .

– Конец работы –

Эта тема принадлежит разделу:

Математическая модель. Решение нелинейных уравнений. Решение систем линейных алгебраических уравнений

Погрешность математической модели связана с ее приближенным описанием реального объекта Например если при моделировании экономической системы не... Исходные данные... Исходные данные как правило содержат погрешности так как они либо неточно измерены либо являются результатом...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вычислительные методы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Корректность
Определим вначале понятие устойчивости решения. Решение задачи y* называется устойчивым по исходным данным x*, если оно зависит от исходных данны

ЛЕКЦИЯ 9
Тема: Элементы теории погрешностей Определение. Пусть u и — точное и приближенное значение некоторой величины соответственно. Тогда абсолютной погрешностью п

Метод деления отрезка пополам является самым простым и надежным способом решения нелинейного уравнения.
Пусть из предварительного анализа известно, что корень уравнения (2.1) находится на отрезке [a0, b0], т. е. x*[a0, b0], так, что f(x

Пусть уравнение (2.1) можно заменить эквивалентным ему уравнением
x = (x). (2.4) Например, уравнение - 0.5 = 0 можно заменить эквивалентным ему уравнением x = 0.5sinx. Выберем каким-либо образом начальное прибл

Метод Ньютона (метод касательных)
вать следующий критерий окончания итераций метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство |xn - xn -

Метод ложного положения
Рассмотрим еще одну модификацию метода Ньютона. Пусть известно, что простой корень x* уравнения f(x) = 0 находится на отрезке [a, b] и на одном из ко

Постановка задачи
Требуется найти решение системы линейных уравнений: a11x1 + a12 x2 + a13x3

Метод исключения Гаусса с выбором главного элемента по столбцу
Хотя метод Гаусса является точным методом, ошибки округления могут привести к существенным погрешностям результата. Кроме того исключение по формулам (3.7) нельзя проводить, если элемент главной ди

Вычисление определителя методом исключения Гаусса
Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов. В результате метода исключений Гаусса система линейных уравнений (3.2) с квадратн

Вычисление обратной матрицы методом исключения Гаусса
Обратной матрицей к матрице A называется матрица A-1, для которой выполнено соотношение: A A-1 = E, (3.18) где

Метод простой итерации Якоби
Метод Гаусса обладает довольно сложной вычислительной схемой. Кроме того, при вычислениях накапливается ошибка округления, что может привести к недостаточно точному результату. Рассмотрим метод про

Метод Зейделя
Модификацией метода простых итераций Якоби можно считать метод Зейделя. В методе Якоби на (k+1)-ой итерации значения x, i = 1, 2, …, n. вычисляются подстановкой

Постановка задачи
Задача приближения (аппроксимации) функций заключается в том, чтобы для данной функции построить другую, отличную от нее функцию, значения которой достаточно близки к значениям данной функции. Така

Приближение функции многочленами Тейлора
Пусть функция y = f(x) определена в окрестности точки a и имеет в этой окрестности n + 1 производную. Тогда в этой окрестности справедлива формула Тейлора:

Интерполяция функции многочленами Лагранжа
Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узл

Аппроксимация функций. Метод наименьших квадратов
В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi

Постановка задачи численного интегрирования
Далеко не все интегралы можно вычислить по известной из математического анализа формуле Ньютона - Лейбница: I == F(b) - F(a), (5.1) где

Метод прямоугольников
Формулу прямоугольников можно получить из геометрической интерпретации интеграла. Будем интерпретировать интеграл как площадь криволинейной трапеции, ограниченной графиком функции y = f(x

Метод трапеций
Выведем формулу трапеций так же, как и формулу прямоугольников, из геометрических соображений. Заменим график функции y = f(x) (рис.5.1) ломаной линией (рис.5.7), полученной следующим

Метод Симпсона (метод парабол)
Заменим график функции y = f(x) на отрезке [xi, xi+1], i = 0, 2, … , n - 1, параболой, проведенной через точки (xi

Правило Рунге практической оценки погрешности
Оценки погрешности по формулам (5.4), (5.8) и (5.12) являются априорными. Они зависят от длины элементарного отрезка h, и при достаточно малом h справедливо приближенное равенство:

Постановка задачи Коши
Известно, что обыкновенное дифференциальное уравнение первого порядка имеет вид: y (t) = f(t, y(t)). (6.1) Решением уравнения (6.1) являе

Метод Эйлера
Простейшим методом решения задачи Коши является метод Эйлера. Будем решать задачу Коши y (t) = f(t, y(t)). y(t0

Модифицированные методы Эйлера
Первый модифицированный метод Эйлера. Суть этого метода состоит в следующем. Сначала вычисляются вспомогательные значения искомой функции y в точках t = ti + с помощ

Метод Рунге - Кутта
Метод Рунге - Кутта является одним из наиболее употребительных методов высокой точности. Метод Эйлера можно рассматривать как простейший вариант метода Рунге - Кутта. Рассмотрим задачу Кош

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги